
Abstract 

Word-of-mouth communication has been shown to play a key role 

in a variety of environments such as viral marketing and virus 

spreading. A family of algorithms, generally known as informa-

tion spreading algorithms or word-of-mouth algorithms, has been 

developed to characterize such behavior. However, they have 

limitations, including the inability to: (1) capture when the com-

munications or contacts take place and (2) explain where the in-

fluence comes from. These drawbacks have limited the studies 

about how the spreading of influence takes place in social net-

works. In this paper, we present a new word-of-mouth algorithm 

that considers the temporality of the communications and keeps 

track of how influence travels over the social network. We vali-

date the proposed algorithm via simulations of word-of-mouth 

traces on call detailed records, in order to model how influence 

spreads. Our results indicate that (1) static factors of social net-

works are not enough to model influence and (2) there seems to be 

statistical invariants of how influence spreads in a network. 

1 Introduction and Motivation 

Word-of-mouth (WoM) or information diffusion algorithms 

appeared in the social sciences [1] and are based on the idea 

of using a social interaction network to model the flow of 

information. This family of algorithms has been success-

fully used in a variety of areas, including viral marketing 

[2], epidemiology, and churn prediction [3]. In each of 

these applications, the concept of information that passes 

from one node to another when an interaction takes place 

has different semantic implications: in viral marketing and 

churn prediction, it is seen as influence, whereas in epide-

miology, it is the viral charge. Note that in this paper, the 

concepts of energy, information or influence spread are 

used with the same semantics.  

In typical WoM algorithms [1][3], inferring the structure of 

the social network and modeling the diffusion of informa-

tion are considered two different problems that are solved 

using different algorithms: first, a social network is con-

structed, followed by an information spreading algorithm, 

such that the order with which nodes interchange informa-

tion or influence is not considered. However, in the case of 

viral spread (e.g. marketing, human or computer viruses, 

etc.), when the interactions take place is very important, 

because an individual will propagate information only if he 

or she has previously received it [4]. Also, in most of the 

applications where WoM algorithms are applied it is rele-

vant to know who is responsible for each node’s activation, 

i.e. the causality of the influence. Therefore, the algorithms 

should be able to identify how the energy that activates a 

node reached that node. For example, causality identifies 

which nodes are responsible for the churn of a node in churn 

prediction or for the acquisition of a product in viral market-

ing. This analysis characterizes the importance –from an 

information spread perspective-- of each node in the net-

work. Traditionally, the identification of important nodes 

has been tackled with the concept of social leaders or alpha 

users [5]. Nevertheless, the concept of an alpha user is typi-

cally seen as a static value defined by the architecture of the 

associated social network. The algorithm proposed in this 

paper models not only the importance of the nodes of a net-

work, but also the dynamic aspects of information spread. 

The contributions of this paper are twofold: (1) we propose 

a novel information spreading algorithm that considers the 

order in which interactions take place and models how a 

node receives influence from its neighbors; and (2) we vali-

date the algorithm by means of simulations on a real cell 

phone network. 

2 Related Work  

Generally, the most popular WoM algorithms [1][3]can be 

summarized in the following steps: 

1. Activated nodes are given an activation value (typically 

1) while non-activated nodes are given a value of 0. 

2. The set of nodes that are activated transfer part of their 

energy to neighboring nodes, modulated by a spreading 

or propagation factor that indicates which part of the 

energy is transferred and by a distribution function that 

indicates the percentage of energy that is transferred to 

the neighboring nodes.    

3. Step 2 is repeated until the variation of the energy in the 

nodes is below a threshold. 

4. Once the energy distribution has converged, the nodes 

with associated energy above a threshold are considered 

to be “infected”.   
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Note how these algorithms distribute the original energy of 

the network among all the nodes until the level of energy 

stabilizes. This implies that the activated nodes, and in gen-

eral any node that has received energy, lose part of that en-

ergy during an interaction.  However, this assumption might 

not necessarily be appropriate for modeling the spread of 

information. If the energy level represents an influence ca-

pacity, the fact that someone gets in contact with someone 

else does not imply that the original person loses his/her 

influence. The literature includes studies that manifest the 

importance of influence in social networks. The work of 

Dasgupta et al. [3] presents the use of an activation spread-

ing algorithm for churn prediction. Lahiri et al. [4] measure 

how changes produced by the evolution in time of dynamic 

networks impact the accuracy of the prediction of the spread 

of the Independent Cascade Model [1]. Blondel et al. [5] 

show that users within the same social network tend to use 

the same set of tags in Flickr, thus highlighting the effect of 

influence.  

In our work, we identify the correlation between the level of 

influence of a node and its static factors (degree, duration, 

etc.). Our results indicate that the correlation does not fully 

explain the level of influence. Therefore, we extend our 

study to model temporality, causality and how influence 

spreads over the network. Our results show that the spread 

of influence is determined by parameters that are invariant 

regarding, among other factors, the set of interactions.   

3 Traceable Word-of-mouth Algorithm 

3.1 Notation and Data Structures 

The set of N nodes of a network C is defined by 

C={c1,…,cN} or C={c(1),…,c(N)}. Each node C(i) has an 

associated data structure that specifies its initial influence (if 

any), denoted by Ti or T(i) i=1...N. The algorithm uses two 

data inputs: (1) a set of interactions between nodes and (2) a 

set of active nodes. The set of interactions is defined by a set 

of time-ordered vectors k=1…M:  
 

(srck,dstk,lenk)/srck ∈ C,dstk ∈ C,lenk ∈ ℜ
+
 (1) 

 

where, srck and dstk are the source and destination nodes of 

interaction k, respectively; and lenk is the length of the inter-

action k, typically measured in seconds.  

Initially, nodes are classified into two sets: (1) active nodes, 

with Ti={(β,{})}, and where β represents their initial influ-

ence; and (2) inactive nodes. The output of the algorithm 

consists of Ti, i=1...N, where each Ti is updated to represent 

each node’s influence and its trace according to the set of 

previous interactions. After a set of interactions has taken 

place, Ti is defined as a time-sorted list of influence tuples: 
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The tuple represents an interaction in which a load of influ-

ence was transmitted from the source node i to the destina-

tion node j. The path represents how that influence was 

transmitted: 
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i cc … are the intermediate nodes that have 

transferred the influence from the active_node to the dst 

node (the set of interactions is ordered in reverse time). The 

first element of the path, dst, can be referred to as pathi
j
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j
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where |χ| indicates the length of vector χ . The total influ-

ence accumulated by node i, act(c(i)), is defined as: 
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3.2 Algorithm 

Figure 1 presents the proposed algorithm to compute the 

evolution of Tn. With each interaction, the source nodes that 

have an influence greater that 0 transfer influence to the 

destination nodes, according to the influence_transfer func-

tion, annotating the path of the transfer in the process. 

Source nodes do not lose influence in each interaction and 

destination nodes will only receive influence until their ac-

cumulated influence equals β.  

 

 

 

 

 

 

 
 
 
 

Figure 1. Algorithm to compute the trace of influence. 

 

The two parameters that need to be defined in the proposed 

algorithm are β and the influence_transfer function. A typi-

cal value for β used in WoM algorithms is 1 [3]. The influ-

ence_transfer function is a function that considers the length 

of the interaction between the source node and the destina-

tion node and transfers a proportional amount of influence. 

We have experimented with two influence transfer func-

tions:  

(1) A piecewise-linear function:  
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 for k=1…M do 

       if (act(srck)=0 or act(dstk)> β) 

           next interaction (k=k+1) 

       else  
          d=influence_transfer(lenk) 

          for j=1…|T(srck)|  
     T(dst

k
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          end for 

       end if 

 end for 



(2)A Gompertz function [6]: 
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with b=-2 and c=1/600. The parameters of the two influ-

ence transfer functions have been defined according to the 

characteristics of the interaction data: 53% of calls are less 

than 1 minute long and 99% of calls are less than 1 hour 

long, with 46% of the calls between 1 and 60 minutes.  

4. Characterization of Influence  

We propose four concepts to characterize the spread of in-

fluence: (1) primary source of influence (PSI); (2) direct 

source of influence (DSI); (3) intermediary sources of influ-

ence (ISI) and (4) influence paths (IP). 

4.2 Primary Sources of Influence (PSI) 

The primary sources of influence of node A, PSI(A), are the 

set of nodes where the energy received by A originated 

from, indicating for each originating node the total amount 

of energy transferred. Formally, they are defined as: 
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where S stores the originating nodes, which will always be a 

subset of the active nodes. The originating nodes of influ-

ence of a node A are the last elements of each path of TA-- 

see Eq. 4. The union set operator only includes the nodes 

once, in case of repetitions. The energy transferred by each 

originating node Si is obtained as the sum of the loads of 

each path of TA where the last element is Si. PSI can also be 

defined globally for all the nodes of a network. The Global 

Primary Sources of Influence of a network C, GPSI(C), is 

defined as the set of nodes where the energy received by any 

node of the network originated from. Formally:  
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4.3 Direct Sources of Influence (DSI) 

The direct sources of influence of node A, DSI(A), are the 

set of nodes that directly transmitted energy to A (i.e., in one 

hop), indicating for each direct node the total amount of 

energy transferred. Formally: 
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The only difference between PSI and DSI is that in the case 

of DSI, the direct node is defined as the first node presented 

in any path of TA. DSI can also be defined globally for all 

the nodes of a network. Formally, the Global Direct Sources 

of Influence, GDSI(C), of a network C are given by: 
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4.4 Intermediary Sources of Influence (ISI) 

The intermediary sources of influence of node A, ISI(A), are 

the set of nodes used to transmit the influence from its ori-

gin to A, excluding the source of the influence and the direct 

influence node, with the total amount of energy transmitted 

by each intermediary node. Formally, TSI(A) is defined as: 
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The formulation in this case is more complex because the 

intermediary nodes are between the direct node and the ori-

ginating node, thus the double union to define that set. The 

ISI concept can also be defined globally for all the nodes of 

a network. Formally:  

{ }

∑ ∑
= =

−

=

−

===

+

=

∈=

=

ℜ∈⊆=

Nn Tj

j

n

path

k
i

j

ni

j

n

path

i

T

j

N

n

iSiii

n

j
n

j
An

kpathSload

ipathS

CSSCGTSI

...1 ...1

1

2

1

211

...1

)(/

)(

,,,)(

U

UUU

ε

εε

 

(13) 

4.5 Influence Paths (IP) 

Influence paths are defined globally for a network C as the 

set of paths used to transmit influence from active nodes to 

destination nodes, with the value of total influence transmit-

ted. Formally, the influence paths of network C, IP(C) are 

given by: 
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The set of paths P is obtained by joining all possible paths 

from all nodes. A global Length Path (LP) measure can be 

defined as the length of each one of the paths in IP(C), 

where the length is given in number of nodes, i.e. LP quanti-



fies the number of nodes that the influence has to travel 

from the activated node to the destination node. 

5. Experimental Results 

In this section, we simulate influence being transferred be-

tween individuals by applying the proposed algorithm on 

Call Detail Records (CDR) data. It is a simulation because 

the underlying assumption in our experiments is that phone 

calls longer than certain duration imply the propagation of 

influence from the caller to the callee, although there is no 

hard evidence of that in the data.  

5.1 Data Set 

Cell phone call data in the form of CDRs (Call Detail Re-

cords) were obtained for a number of users close to 250,000 

over a period of six months. From all the information con-

tained in a CDR, only the originating encrypted number, the 

destination encrypted number, the time and date of the call, 

and the duration of the call were considered. Calls were 

used to create a static social network. Figure 2 presents the 

log-log representation of the degree distribution (left) and 

the distribution of call duration (right) of the network. The 

degree distribution has a power law fitting with α=2.3 and 

the call duration distribution has a lognormal behavior with 

µ=5.02 σ=1.77. These values are similar to the values re-

ported in the literature [7][8].  
 

 

Figure 2. (lefy) log-log distribution of the degree distribution and 

(right) of the duration distribution of the original network. 

5.2 Methodology 

Two simulations were run in order to model how influece 

spreads: (1) Experiment 1 (Exp1), considers 1% of randomly 

chosen activated nodes, uses the first month of the data and 

a linear influence transfer function; and (2) Experiment 2 

(Exp2), considers that 5% of the nodes are activated, where 

the nodes are selected in this case using a random walk [9], 

uses a different month of data (fourth month) and a 

Gompertz influence transfer function.  The proposed algo-

rithm was run for each experiment, producing two sets of Ti. 

Next, we computed the correlation between the final level of 

energy in each node and the degree, frecuency of calls and 

total duration of calls for the same node. In addition, we 

computed and plotted in a log-log scale the ranked GPSI, 

GDSI, GISI, IP and LP functions as they are relevant for 

modeling the spread of influence in the network. 

5.3 Results 

Figures 3 and 4 summarize the results for Exp1 and Exp2. 

The heads of the distributions represent nodes that have a lot 

of influence, while the tails include nodes that play a minor 

role in spreading the influence. Each figure presents the log-

log rank plot of the nodes, where the x-axis contains the 

number of nodes (phone numbers) in decreasing order of 

energy and the y-axis corresponds to: global primary source 

of influence (GPSI) (Fig. 3a and Fig. 4a for Exp.1 and Exp.2 

respectivelly), the global direct source of influence (GDSI) 

(Fig. 3b and Fig. 4b), the global intermediary source of 

influence (GISI) (Fig. 3c and Fig. 4c), the influence paths 

(IP) (Fig. 3d and Fig. 4d) and the length paths (LP) (Fig. 3e 

and Fig. 4e). Each graph presents the results after 1 million 

calls, 2 million calls and all the calls. The y-axis represents 

the total energy, except for the LP plot where it represents 

the length in number of nodes.   

Correlation Coefficients 

Table 1 presents the correlation coefficients between the 

final level of influence of each node in Exp1 and Exp2 and: 

(1) degree, (2) frequency of calls, (3) total duration of the 

calls and (4) multiple linear regression considering degree, 

frequency and duration of calls, where we report the coeffi-

cient of determination.  

 
Table I. Correlation between influence and degree, frequency, call 

duration and their combination for the first and second experiment. 

 Degree Frequency Duration MLR 

Experiment 1 0.24 0.42 0.60 0.60 

Experiment 2 0.24 0.24 0.29 0.30 

 

Note that duration is the variable that best justifies the influ-

ence received by a node, as much as considering the three 

parameters together via the MLR. This result is expected 

due to the role played by duration in the influence_transfer 

function of our model. However, duration can only express 

as much as 30% of variation in Exp2 and 60% in Exp1, 

which implies that the rest of the variation is caused by 

other factors (e.g. order of interactions, temporality, nature 

of the link between each node, nature of the node, etc.). Our 

results strongly suggest that there is more to the spreading 

of influence than what is captured by the standard –static-- 

metrics such as degree, frequency and call duration. 

Log-log Rank Plots 

In the plots produced by both experiments, it can be ob-

served that the behavior of the nodes does not significantly 

change when we vary the number of phone calls considered. 

The curves are basically the same, shifted up and to the right 

because of the increase in the total influence transmitted 

over time, but their statistical behavior remains the same. 

This does not mean that the nodes that are in the head of the 

distribution at 1 million interactions are still at the head of 

the distribution later on, but that the relative importance of 

the nodes that are in the head compared to those at the tail of 

the distribution remains constant. 
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Figure 3. Rank plots (log-log) of: a) Global primary source of 

influence, GPSI; b) global direct source of influence, GDSI; c) 

global transmitting source of influence, GISI; d) influence paths, 

IP; and e) length of paths, LP, for Exp1 for 1 million calls, 2 mil-

lion calls and the entire data set. 
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Figure 4. Rank plots (log-log) of: a) global primary source of 

influence, GPSI; b) global direct source of influence, GDSI; c) 

global transmitting source of influence, GISI; d) influence paths, 

IP; and e) length of paths for Exp2 for 1 million calls, 2 million 

calls and the whole set. 



These plots are very valuable for identifying the importance 

of each node in the network. For example, GPSI orders the 

nodes where more energy originates from and GISI orders 

the nodes by the role they play in transferring energy. Iden-

tifying these nodes is fundamental for many social network 

applications (e.g., churn prediction, marketing, epidemics, 

etc.). Table II and Table III present the fitting parameters for 

power law and lognormal distributions of the survival func-

tions obtained after processing all the interactions. The 

software used was Clauset’s et al. [10] algorithm for power 

law fitting and the MATLAB statistical toolbox for the log-

normal fit.  
 

Table II. Lognormal and power law fitting parameters for each 

plot for the first experiment. 

Power Law Lognormal  

α xmin µ σ 

GPSI 3.14 1 -0.07(*) 1.03(*) 

GDSI 1.85 (*) 0.09 (*) -3.71 2.26 

GISI 1.48 (*) 0 (*) -4.73 2.60 

IP 4.55 1 -4.92(*) 4.79(*) 

LP 1.39(*) 0.78(*) -5.08 7.54 

 

Table III. Lognormal and power law fitting parameters for each 

plot for the second experiment. 

Power Law Lognormal  

α xmin µ σ 

GPSI 3.14 2.7 -0.04(*) 0.85(*) 

GDSI 3.45 2.98 -0.99 (*) 1.45 (*) 

GISI 3.39 1.21 -0.97 (*) 1.15 (*) 

IP 4.55 1 -4.92(*) 4.79(*) 

LP 1.57(*) 1.78(*) 1.63 4.9 

 

In the tables, α is the exponent of the power law and xmin 

the value where the fitting starts. The lognormal distribution 

is characterized by µ and σ parameters. An asterisk indicates 

best fit in terms of root mean squared error.  

An analysis of the results indicates that GPSI has in both 

cases a lognormal distribution. This could be an indication 

that the distribution of the originating influence is an invari-

ant, independently of other factors. Similarly, LP, the length 

of the paths, has in both cases a power law distribution with 

similar parameters. This fact indicates that preferential at-

tachment behavior might also hold true for the length of the 

traces that describe the influence received. Conversely, IP, 

the set of influence paths, has a lognormal distribution and 

exhibits similar behavior in both experiments. It is interest-

ing to note that for Exp1 the maximum trace length is 20 

and the average trace length is 1.28, whereas in Exp2 the 

maximum trace length is 13 and the average path length is 

1.6. Also, in both cases there seems to be an upper bound in 

the length of the path close to 20. In theory, the lengths of 

the paths could grow as new phone calls are made. How-

ever, this increase might not be very significant as the log-

normal has small probability mass in the tail. Finally, GDSI 

and GTSI are modeled by different distributions in each 

experiment: while in Exp1 they both follow a power law 

distribution, in Exp2 they have a lognormal distribution. 

This difference is probably caused by the fact that each ex-

periment used a different set of interaction data. 

6. Conclusions  

WoM algorithms have been used successfully in a variety of 

applications; nevertheless, typical approaches consider the 

social network as a static element. This fact implies that the 

temporality in which interactions take place is ignored. In 

this paper, we have introduced a novel WoM algorithm that 

considers the order of the interactions between nodes to 

spread influence. As a result, it is possible to track the influ-

ence of a node to see where each “piece of influence” came 

from, using the PSI(A), DSI(A), ISI(A) and IP(A) functions. 

The ability to trace influence also opens the possibility of 

modeling how influence spreads over the network. We have 

used two different experimental settings with the proposed 

algorithm, in order to find invariants regarding influence 

spread. Our preliminary results show that while GPSI, IP 

and LP seem to be invariant with respect to the influence 

model, GDSI and GISI depend on the set of interactions 

used to model the network. We have also shown that static 

metrics such as node degree, phone call duration and fre-

quency (which can be interpreted as edge weights) are not 

sufficient to fully explain the spread of influence in a social 

network, suggesting that there are other –temporal-- factors 

that should be considered. 
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