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Abstract—Call Detail Record (CDR) databases contain many
millions of records with information about mobile phone calls,
including the users’ location when the call was made/received.
This huge amount of spatio-temporal data opens the door for
the study of human trajectories on a large scale without the bias
that other sources, like GPS or WLAN networks, introduce in the
population studied. Furthermore, it provides a platform for the
development of a wide variety of studies ranging from the spread
of diseases to planning of public transportation. Nevertheless,
previous work on spatio-temporal queries does not provide a
framework “flexible” enough for expressing the complexity of
human trajectories. In this paper we present Spatio-Temporal
Pattern System (STPS) to query spatio-temporal patterns in
very large CDR databases. STPS uses a regular-expression query
language that is intuitive and that allows for any combination
of spatial and temporal predicates with constraints, including
the use of variables. The design of the language takes into
consideration the layout of the areas being covered by the cellular
towers, as well as “areas” that label places of interested (e.g.
neighborhoods, parks, etc). A full implementation of the STPS
is currently running with real, very large CDR databases at
Telefónica Research Labs. An extensive performance evaluation
of the STPS shows that it can efficiently find very complex
mobility patterns in large CDR databases.

I. INTRODUCTION

The recent adoption of ubiquitous computing technologies

by very large portions of the world population has enabled –

for the first time in human history – to capture large scale

spatio-temporal data about human motion. In this context,

mobile phones play a key role as sensors of human behavior

since they are typically owned by one individual that carries it

at (almost) all times and are nearly ubiquitously used. Hence,

it is no surprise that most of the quantitative data about human

motion has been gathered via Call Detail Records (CDRs) of

cell phone networks.

When a cell phone makes/receives a phone call the in-

formation regarding the call is logged in the form of a

CDR. This information includes, among others, originating

and destination phone numbers, the time and date when the

1Work done while author was an intern at Telefónica Research–Spain. M.
Vieira’s Ph.D. work has been funded by a CAPES/Fulbright fellowship.

call started, and the towers used, which gives an approximation

of the caller’s/callee’s geographical location. Such data is very

rich and has been used recently for several applications, such

as to study user’s social networks [1], [2], [3], human mobility

behaviors [4], [5], and cellular network improvement [6].

The volume of data generated by a given operator in the

form of CDRs is huge, and it contains valuable spatio-temporal

information at different levels of granularity (e.g. citywide,

statewide, nationwide, etc). This information is relevant not

only for telecommunication operators but also as a base for a

broader set of applications with social connotations like com-

muting patterns, transportation routes, concentrations of peo-

ple, modeling of virus spreading, etc. The ability to efficiently

query CDR databases to search for spatio-temporal patterns

is key to the development of such applications. Nevertheless,

the commercial systems available cannot efficiently handle this

kind of spatio-temporal processing. One possible solution to

search for such patterns is to perform a sequential scanning

of the entire CDR database and, for each user, check whether

it qualifies using a subsequence matching-like algorithm (e.g.

KMP (Knuth-Morris-Pratt) [7]). Such naive approach however

is computationally extremely expensive due to the amount of

users/CDRs to be processed. Furthermore, there is the fact that

no information about the temporal dimension of the pattern

(e.g. within given time frame) or spatial properties (e.g. in a

given neighborhood) can be specified.

Taking into consideration the large volume of data and

current implementation of the CDR storage systems for

telecommunication providers, one effective way to support

such spatio-temporal pattern queries is to extend the current

systems with some indexes and algorithms to efficiently pro-

cess such queries. One aspect that has to be considered is that

commercial storage systems are in their majority implemented

on top of Relational Database Management System (RDBMS).

Therefore the provided solution should use the available

RDBMS infrastructure such as tables, indexes (e.g. inverted

indexes and B-trees), merge-join algorithms, and so on.

In this paper we present the Spatio-Temporal Pattern System

(STPS) to query spatio-temporal patterns in CDR databases.



The STPS allows users to express mobility pattern queries with

a regular expression-like language that can include “variables”

in the pattern specification. Variables serve as “placeholders”

in the pattern for explicit spatial regions and their value is

determined during the pattern query evaluation. An example

for a query with variables is the pattern “find users who visited

the same mall twice in the last 24 hours”. In this scenario we

do not know in advance which one is the mall visited by the

user. So we use variables which can take values from the set

of malls to specify the user behavior in a pattern query. We

have to pay attention that in the above example the variable

should appear twice in the pattern.

STPS also includes lightweight index structures that can

be easily implemented in most commercially RDBMS. We

present an extensive experimental evaluation of the proposed

techniques using two large, real-world CDR databases. The

experimental results reveal that the proposed STPS framework

is scalable and efficient under several scenarios tested. Our

proposed system is up to 1,000 times faster than a base line

implementation, making the STPS a very robust approach for

querying and analyzing very large phone-call databases. A

fully operational prototype of the system is implemented and

running at Telefónica Research Labs.

This paper presents a continuation of our previous work in

pattern query evaluation in trajectorial archives [8]. In [8] we

proposed a regular-expression based language and evaluation

algorithms to query patterns in trajectorial archives. In this

paper we adopt that approach and study its application in

the domain of CDR databases. In particular, we modified the

join-based evaluation algorithm to handle trajectories specified

in CDR format rather than the traditional form, defined as

sequence of object locations with their longitude and latitude

coordinates. This change in the data format poses changes

in the query languages as well. In [8] the query language

includes several query predicates that are well suited when

the exact location of the object is known for a continuous

period of time. An example of such a predicate is the distance-

based predicate used to find trajectories that passed as close as

possible to some area of interest. In a CDR database however,

the exact location of the mobile user is unknown and users

are not continuously monitored. Thus, the pattern language

proposed here is more suitable for CDR databases (e.g. cells,

user defined areas, temporal predicates to track hopping during

a call or for different calls, etc). Our language proposed in this

paper also supports user defined constraints (e.g. conditions,

inequalities, time constraints, etc). Furthermore, the query

evaluation system is redesigned to work with the features

(e.g. tables, B+-trees and so on) of a commercially available

RDBMS, since CDR databases are typically implemented in

such systems.

The remainder of this paper is organized as follows: Section

II discusses the related work; Section III provides some basic

descriptions on the infrastructure; Section IV provides the

formal description of the STPS language; the proposed system

is described in Section V and its experimental evaluation

appears in Section VI; Section VII concludes the paper.

II. RELATED WORK

Infrastructures for querying spatio-temporal patterns have

already been studied in the literature in different contexts,

mainly for: (1) time-series databases; (2) similarity between

trajectories; and (3) single predicate for trajectory data (GPS).

Pattern queries have been used in the past for querying

time series using SQL-like query language [9], [10], or event

streams using a NFA-based method [11]. Our work differs

from those solutions mainly because it provides a richer

language to specify spatio-temporal patterns and an efficient

way to evaluate them. For moving object data, patterns have

been examined in the context of query language and modeling

issues [12] as well as query evaluation algorithms [13].

Similarity search among trajectories has been also well

studied. Work in this area focuses on the use of different

distance metrics to measure the similarity between trajectories

(e.g. [14], [15], [16]).

Single predicate queries for trajectory data, like Range and

NN queries, have been well studied in the past (e.g. [17]).

In these contexts, a query is expressed by a single range or

NN predicate. To make the evaluation process more efficient,

the query predicates are typically evaluated utilizing hierarchi-

cal spatio-temporal indexing structures [18]. Most structures

use the concept of Minimum Bounding Regions (MBR) to

approximate the trajectories, which are then indexed using

traditional spatial access methods, like the MVR-tree [19].

These solutions, however, are focused only on single predicate

queries and further constructions to build a more complex

query, e.g. a sequence of combination of both predicates,

are not supported. In [13] an incremental ranking algorithm

for simple spatio-temporal pattern queries is presented. These

queries consist of range and NN predicates specified using

only fixed regions. Our work differs in that we provide a more

general and powerful query framework where queries can

involve both fixed and variable regions as well as topological

operators, temporal predicates, constraints, etc., and an explicit

ordering of the predicates along the temporal axis.

In [20] a KMP-based algorithm [7] is used to process pat-

terns in trajectorial achieves. This work, however, focuses only

on the contain topological predicate and cannot handle explicit

or implicit temporal ordering of predicates. Furthermore, this

approach on evaluating patterns is effectively reduced to a

sequential scanning over the list of trajectories stored in

the repository: each trajectory is checked individually, which

becomes prohibitive for large trajectory archives. We show in

Section VI that this approach is very inefficient.

III. INFRASTRUCTURE FOR DATA ACQUISITION

Cell phone networks are built using a set of Base

Transceiver Stations (BTS) that are in charge of communi-

cating mobile phone devices with the cell network. The area

covered by a BTS is called a cell. A BTS has one or more

directional antennas (typically two or three, covering 180 or

120 degrees, respectively) that define a sector and all the

sectors of the same BTS define the cell. At any given moment

in time, a cell phone is covered by one or more antennas.



Fig. 1. (a) Original coverage areas of BTSs and (b) approximation of
coverage areas by Voronoi diagram.

Depending on the network traffic, the phone selects the BTS

to connect to. The geographical area covered by a cell depends

mainly on the power of individual antennas. Depending on

the population density, the area covered by a cell ranges

from less than 1 Km2, in dense urban areas, to more than 5

Km2, in rural areas. Each BTS has latitude/longitude attributes

that indicate its location, a unique identifier BTSid, and the

polygon representing its cell. For simplicity, we assume that

the cell of each BTS is a 2-dimensional non-overlapping

region, and we use Voronoi diagrams to define the covering

areas of the set of BTSs considered. Figure 1(a) presents a set

of BTSs with the original coverage for each cell, and (b) the

simulated coverage obtained using Voronoi diagrams. While

simple, this approach gives us a good approximation of the

coverage area of each BTS. In practice, to build the “real”

diagram of coverage, one has to consider several factors in the

mobile network, e.g. power and orientation of each antenna.

CDR databases are populated when a mobile phone, con-

nected to the network, makes/receives a phone call or uses a

service in the network (e.g., SMS, MMS, etc.). In the process,

the information regarding the time and the BTS where the

user was located when the call was initiated is logged, which

gives an indication of the user’s geographical location at a

given period in time. Note that no information about the exact

user’s location inside a cell is known. Furthermore, for a given

call it is possible to store not only the initial BTS during

the period of a call, but also all BTSs used during it in case

caller/callee move to other cells in the network (hopping). The

STPS supports this richer representation of the users’ mobility.

The following attributes from CDR databases are used in the

STPS system: (1) the originating phone number phoneo
id; (2)

the destination phone number phoned
id; (3) the type of service

(voice: V, SMS: S, MMS: M, etc.); (4) the BTS identifier

used by the originating number (BTSo
id); (5) the BTS iden-

tifier used by the destination number (BTSd
id); (6) timestamp

(date/time) of the connection between phoneo
id and phoned

id

in BTSo
id and BTSd

id, respectively; and (7) the duration dur

while phoneo
id and phoned

id connected to BTSo
id and BTSd

id

(hopping enabled), respectively. Since in the STPS we are only

interested in users’ mobility, we do not make any distinctions

between caller and callee. Therefore, the superscript symbols

(o and d) in phoneid and BTSid are omitted in the STPS

language and framework. The BTS identifier is only known

for phoneid that are clients of the telecommunication operator

keeping the CDR database. When the hopping is enabled, a

TABLE I

A SET OF CDRS REPRESENTING 4 DIFFERENT CALLS.

timestamp dur phoneo
id phoned

id BTSo
id BTSd

id type

1123001 3 4324542 4333434 231 121 V

1123004 2 4324542 4333434 232 435 V

1123006 5 4324542 4333434 234 121 V

1123235 2 4324542 5334212 235 231 V

1123237 4 4324542 5334212 231 233 V

1124113 3 4333434 4324541 238 231 V

1124116 4 4333434 4324541 239 231 V

1124116 1 5334212 4333434 451 239 S

new CDR row is created every time either users connects to

different BTSid during the same phone call, otherwise, a single

CDR is stored to represent the initial position of phoneo
id and

phoned
id for the total duration of the call dur.

Table I shows a set of CDRs for 4 distinct calls. In this

example the BTS hopping option is enabled. Phone number

4324542 makes a phone call to 4333434 starting in BTSo
id=231

at timestamp 1123212. Then the user 4324542 moves from

BTSo
id=231 to BTSo

id=232 3 minutes after starting the call,

generating another record in the database. After 2 minutes,

user 4324542 moves to BTSo
id=234 staying there for 5 min-

utes. The user 4333434 is connected to BTSd
id=121, then to

435, and then back to 121 during the call. When a user is

connected to a particular BTSid, it does not necessary mean

that the user is on the same place for the whole period of

connection. The second call represents the call made from

4324542 to 5334212, and the third one from 4333434 to

4324541. The eight entry of the table details an SMS sent from

5334212 to 4333434 when they were connected to BTSo
id=451

and BTSd
id=239, respectively. If the BTS hopping was not

enabled, the first three entries would have been presented as a

single one, with just the initial BTSo
id=231 and a total duration

of 10 minutes.

IV. THE STPS PATTERN QUERY LANGUAGE

We define a trajectory T (phoneid) of a mobile user with

identifier phoneid in CDR databases as a sequence of records

{〈phoneid,BTSid, t1, dur1〉, . . . , 〈phoneid,BTSid, tm, durm〉},
where BTSid is the BTS identifier which serviced the mobile

user phoneid at timestamp ti for the duri of time (ti, tm ∈ N,

ti < tm and duri ∈ N). This trajectory definition covers both

formats described in the previous section: (i) as a sequence of

BTSs where the user was connected to the mobile network;

or (ii) as a sequence of a trajectory segments (at a BTS level)

where each segment represents the movement of the user

between two BTS during a phone call. We assume that CDRs

using this representation are stored in an archive as shown in

Figure 3(d).

The STPS language uses the above definition of a trajectory

to covers both data formats; i.e. we can query for patterns

using records for the same phone call or different calls. This

is achieved by associating temporal predicates for each spatial

predicate which can be used to restrict the user “movements”

into a time frame of a single phone call. In the next subsec-

tions we describe in details the syntax of the STPS pattern



Q := (S [
⋃
C])

S := {P1.P2., ..., .Pn}, |S| = n

Pi := 〈opi,Ri[, ti]〉
opi := disjoint|meet|overlap|equal|
inside|contains|covers|coveredBy

Ri ∈ {Σ ∪ Γ}
ti := (tfrom : tto) | ts | tr

Fig. 2. The STPS Pattern Query Language.

query language and its components: the spatial predicates, the

temporal predicates, and the set of spatio-temporal constraints.

A. STPS Language Syntax

A pattern query Q is defined as Q = (S [
⋃
C]), where

S is a sequential pattern and C is an optional set of spatio-

temporal constraints. The set of constraints C is used to specify

certain spatio and/or temporal constraints that an answer has

to satisfy in order to be considered as part of the result. A

trajectory with identifier phoneid matches the pattern query

Q if it satisfies both the sequential pattern S and the set of

spatio-temporal constraints C. A sequential pattern S is defined

as a sequence of an arbitrary number n of spatio-temporal

predicates S = {P1.P2., ..., .Pn}.
Each spatio-temporal predicate Pi ∈ S is defined by a

triplet Pi = 〈opi,Ri[, ti]〉, where opi represents a topological

relationship operator, Ri a spatial region, and ti the optional

temporal predicate. The operator opi describes the topological

relationship that the spatial region Ri and the coverage area

of the BTS defining a trajectory with identifier phoneid must

satisfy over the (optional) temporal predicate ti. Figure 4

details formally the syntax of the STPS language.

B. Spatial Predicates

A key part of our STPS language syntax is the definition of

the spatial alphabet Σ, used in the spatio-temporal predicates

Pi. We choose the Voronoi diagram cells, that represent the

covering areas of each BTS, to serve as “letters” in our

alphabet Σ. This is because the BTS coverage areas represent

the finest level of granularity in which the data is stored in

CDR databases. In the rest of the paper we use capital letters

to represent the set of BTS coverage areas in the system,

e.g. Σ = {A, B, C, ...}. Such coverage areas can participate

as spatial regions Ri in the definition of the spatio-temporal

predicates Pi.

The users however are not restricted to use only BTS

coverage areas in their queries. On top of this BTS coverage

partitioning the user can define its own geographical maps

with different resolution and different types of regions (school

districts, airports, shopping etc.). Also, users can define poly-

gons defined by a set of latitude/longitude pairs to define a

set of areas. All other regions, defined by the user, have to be

approximated by set of coverage areas in the alphabet Σ. For

instance, one can define the downtown area of a city by cre-

ating regions DOWNTOWN = {D, E, H} and STADIUM-1 =

{S1}, where the downtown area is approximated by the union

of the coverage areas of BTS D, E and H and the Stadium-1

is approximated by the coverage area of BTS S1. The same

BTSid can be used in the definition of multiple regions and

not all BTS have to be included in each geographical map.

Inside the spatial predicates Pi we use finite set of spatial

regions Ri. Those regions can be one of the following: (i)

a particular BTSid ∈ Σ; (ii) an alias A defined by a set of

one or more BTSid ∈ Σ; or (iii) a variable in Γ. We refer

to the first two groups of spatial regions Ri as predefined

spatial regions. A predefined region (i.e., S1 ∈ Σ) is explicitly

specified by the user in the query predicate (e.g. “Stadium-

1” STADIUM-1 = {S1} in our example). In contrary, the

third group of spatial regions, termed variable spatial regions,

references an arbitrary region in the map and it is denoted by

a lowercase letter preceded by the “@” symbol (e.g. “@x”).

A variable region is defined using symbols from the set

Γ = {@a, @b, @c, ...}. Unless otherwise specified, a variable

takes a single value (instance) from Σ (e.g. @a=C); however,

in general, one can also specify in C the possible values of a

specific variable as a subset of Σ (e.g., “any city district with

museums”). Conceptually, variables work as placeholders for

explicit spatial regions and can become instantiated (bound

to a specific region) during the query evaluation in a process

similar to unification in logical programming.

Moreover, the same variable “@x” can appear in several

different predicates of pattern S, referencing to the same

region everywhere it occurs. This is useful for specifying

complex queries that involve revisiting the same region many

times. For example, a query like “@x.S1.@x” finds mobile

users that started from some region (denoted by variable

“@x”), then at some point passed by region S1 and then they

visited the same region they started from.

We finish with the description of the last component of the

spatial predicate: the topological relationship operator opi. In

this paper we use the eight topological relationships: disjoint,

meet, overlap, equal, inside, contains, covers and coveredBy

defined by [12]. Given a phone user record 〈phoneid,BTSj , ti〉
and a region Ri, the operator opi returns a boolean value

whether the coverage area in the phone user record BTSj and

the region Ri satisfy the topological relationship opi (e.g., an

Inside operator will return value true if the user associated

with phoneid was serviced by BTS which has coverage area

inside the spatial region Ri. For simplicity in the rest of the

paper we assume that the spatial operator is Inside and it is

thus omitted from the query examples.

C. Temporal Predicates

As it was mentioned in the definition of the STPS language a

spatio-temporal predicate Pi may include an explicit temporal

predicates ti. Those predicates can be in the form of: (a)

time interval (tfrom : tto) where tfrom ≤ tto (for example

“between 4pm and 5pm”); (b) time snapshot ts (for example

“at 3:35pm”); or (c) time relative tr = ti − ti−1 from

the time instance ti−1 when the previous spatio-temporal

predicate Pi−1 satisfied (for example “1 hour after the user

left his home”). Those temporal predicates imply that the



spatial relationship opi between BTSj and region Ri should

be satisfied in the specified time frame ti (e.g. “passed by

area S1 between 4pm and 5pm”). If the temporal predicates

is not specified, we assume that the spatial relationship can

be satisfied any time in the duration of a call. For simplicity

we assume that if two predicates Pi, Pj occur within pattern S
(where i < j) and have temporal predicates ti, tj , respectively,

then these intervals do not overlap and ti occurs before tj on

the time dimension.

D. Spatio-Temporal Constraints

In order to restrict values that can be matched to spatio-

temporal predicates, the STPS language supports an optional

set of spatio-temporal constraints C. To qualify a phone user

has to first satisfy S and then C. C works like a pos-

filter to eliminate phone users that do not satisfy C. Some

examples of spatio-temporal constraints can be: @x! = @y,

@z = {A, B, C}, Period(ti)=“Weekend”, Day(ti)=“Monday”,

among many others.

E. STPS Language Example

We now provide a complete example of pattern using

the STPS language. One example is: “find all mobile users

that, on Saturdays, first start in an arbitrary area different

to District-A in the morning, then immediately went by

downtown, then by the Stadium-1 between 6pm and 8pm,

then went in the District-B neighborhood between 8pm and

10pm, and finally returned to their first area”. This query

example finds for mobile users that followed a pattern of

movements where the first and last locations are not spec-

ified but have to be the same (@x); three other spatial

predicates are defined over areas of interests; several tem-

poral predicates are also defined; and finally spatio-temporal

constraints are specified to filter out the results. This pat-

tern query can be expressed in the STPS language as fol-

lows: Q := (〈@x, tfrom=6am : tto=12pm〉. 〈DOWNTOWN,

tr=1min〉. 〈STADIUM-1, tfrom=6pm : tto=8pm〉. 〈DISTRICT-
B, tfrom=8pm : tto=10pm〉. 〈@x〉 , C={@x!=DISTRICT-A,

∀ti, tj ∈ S, Date(ti)=Date(tj) ∧ Day(ti)=“Saturday”}).

V. QUERY EVALUATION SYSTEM

In this section we provide in depth description of the query

evaluation system. We start with an overview of the indexing

structures used to make the query evaluation more efficient.

We then describe the Index Join Pattern (IJP) algorithm

for evaluating pattern queries. This algorithm is based on

a merge-join operation performed over the inverted-indexes

corresponding to every fixed predicate in the pattern query S.

A. Index structures

In order to efficiently evaluate pattern queries we use three

indexing structures, as shown in Figure 3: (a) one R-tree

build on top of the BTS regions; (b) one B+-tree for each

BTSid which stores CDR records sorted by timestamp; and (c)

one inverted-index for each BTSid which stores CDR records,

sorted first by phoneid and then by timestamp, that used BTSid

sometime during a call. Along with these indexes we also

store the CDR records in the archive, grouped by phoneid and

ordered by timestamp, as explained in Section IV. The R-tree

is used when there is a spatio-temporal predicate in S which

has some user defined regions (e.g. a spatial range predicate).

In this case we have to find the minimal set of coverage

areas from the alphabet Σ which completely cover the defined

region. In order to do so we create a range query with the user

defined region and the R-tree is traversed in order to return

the set of BTS that overlap with this region. The records for

the returned set of BTS can be merged to form a single list

with all entries to be further processed by our algorithm. This

is only possible because entries in each inverted-index BTSid

has its entries ordered by (phoneid,timestamp) key.

The B+-tree is used by the query engine to prune entries

that do not satisfy a temporal constraint. The engine makes

the decision on using or not the B+-tree based on the type

of temporal constraint that is being evaluated (discussed later

in this section). The inverted-index of a given BTSid stores

pointers to all call records that are related to this BTSid in

sometime during a call. In the inverted-index each entry in

BTSid is a record that contains a phoneid, the timestamp

and duration during which the user was inside region BTSid,

and a pointer to the CDR record associated to the call

in the CDR archive. If a user connects to a given BTSid

multiple times in different timestamps, we store a separate

record for each use. An example of the indexing structures

is shown in Figure 3. The inverted-index entry for the re-

gion D=231 is {(4333431|1123000|2); (4333432|1021421|3);
(4333434|1112141|9); (4333434|1123459|3); ...}. Note that

records from an inverted-index point to the corresponding

phone user in the CDR archive. For example, the record

(4333434|1112141|9) in the inverted-index 231 contains a

pointer to the phone user 4333434.

B. The Index-Join Pattern Algorithm (IJP)

We start with the simple scenario where the pattern S does

not contain any temporal constraints. In this case, the pattern

specifies only the order by which its predicates (whether

fixed or variable) needs to be satisfied. Assume Q contains n

predicates and let Qf denote the subset of f fixed predicates,

while Qv denotes the subset of v variable predicates (n=f+v).

The evaluation of Q with the proposed algorithm can be

divided in two steps: (i) the algorithm evaluates the set Qf

using the inverted-index index to fast prune phone users that

do not qualify for the answer; (ii) then the collection of

the reminding candidate phone users is further refined by

evaluating the set of variable predicates Sv.

(i) Fixed predicate evaluation: All f fixed predicates in Qf

can be evaluated concurrently using an operation similar to

a “merge-join” among their inverted-index lists Li, i ∈ 1..f .

Records from these f lists are retrieved in sorted order by

(phoneid,timestamp) and then joined by their phoneids and

timestamp. The join criteria is Li−1.phoneid = Li.phoneid

and Li−1.timestamp < Li.timestamp (for simplicity we do

not consider the duri attribute). The first part of the criteria



Fig. 3. Index framework: (a) R-tree for the set of BTS; (b) B+-tree and (c) inverted-index for each BTS; and (d) CDR archive.

LM=231
pM1
pM2

(4333431|1123000|2)
(4333432|1021421|3)
(4333434|1112141|9)
(4333434|1123462|6)
(4333437|0931231|13)
(4333441|1231231|9)

LD=121
pD (4333434|1112150|15)

(4333434|1123662|5)
(4333435|1123470|4)
(4333438|1123471|3)
(4333439|1123461|1)
(4333444|1124132|7)

Fig. 4. CDR examples for inverted-indexes LM=231 and LD=121.

ensures that we are connecting records from the same phone

user and the second part ensures that we are satisfying the

predicates in the appropriate order. The fact that the records

in the inverted-index lists are sorted by (phoneid,timestamp)

allows us to process the join with a single pass over the lists

skipping all records that do not match the join criteria. If the

same region appears multiple times in the pattern S than we

use multiple pointers to the inverted-index lists for this region.

Example: The first step of IJP algorithm is illustrated using

the example in Figure 4. Assume the pattern S in the query

Q contains three fixed and two variable predicates, as in:

S = {@x.M.D.@x.M}. This pattern looks for users that first

visited some region denoted by variable @x, then it visited

region M sometime later (no temporal predicate is specified

here), then region D and then visited again the same region

@x before finally returning to M . The first step of the join

algorithm uses the inverted-index for M and D (LM and

LD). Conceptually, pM1
and pM2

represent two pointers to

M inverted-index list.

The algorithm starts from the first record in list LM , phone

4333431, using pM1
. It then checks the first record in list

LD, phone 4333434, using pD. We can deduce immediately

that phone 4333431 is not a candidate since it does not

appear in the list of LD. So we can skip 4333431 and

also 4333432 from the LM list and continue with the next

record, phone 4333434. Since (4333434|1112150|15) in list

LD has timestamp greater than (4333434|1112141|9), these
two occurrences of 4333434 coincide with pattern M.D so we

need to check if 4333434 uses again region M after timestamp

1112150. Thus we consider the first record of list LM using

Algorithm 1 IJP: Spatial Predicate Evaluation

Require: Query S
Ensure: Phones satisfying fixed Sf and variable Sv predicates
1: Candidate Set U ← ∅, f ← |Sf |, Answer ← ∅
2: for i← 1 to f do ⊲ for each Sf

3: Initialize Li with the cell-list of Pi

4: for w← 1 to |L1| do ⊲ analyze each entry in L1

5: p1 = w ⊲ set the pointer for L1

6: for j ← 2 to f do ⊲ examine all other lists
7: if L1[w].id 6∈ Lj then break ⊲ does not qualify
8: Let k be the first entry for L1[w].id in Lj

9: while L1[w].id = Lj [k].id and Lj−1[pj−1].t > Lj [k].t
do

10: k ← k + 1 ⊲ align Lj−1[pj−1].t and Lj [k].t
11: if L1[w].id 6= Lj [k].id then break ⊲ does not qualify
12: else pj = k ⊲ set the pointer for Lj

13: if L1[w] qualifies then
14: U ← U ∪ L1[w].id ⊲ L1[w] satisfy all Sf

15: if |Sv| = 0 then Answer ← U
16: else ⊲ variable predicate evaluation
17: for each u ∈ U do
18: phoneid ← Retrieve(u)
19: Build v segments Segi using phoneid

20: Generate variable-lists for each segment Segi

21: Join variable-lists
22: if phoneid qualifies then
23: Answer ← Answer ∪ phoneid

pM2
, namely user (4333431|1123000|2). Since it is not from

4333434 it cannot be an answer so pointer pM2
advances to

record (4333434|1112141|9). Now pointers in all lists point to

records of 4333434. However, (4333434|1112141|9) in pM2

does not satisfy the pattern since its timestamp should be

greater than timestamp 1112150 of 4333434 in D. Hence

pM2
is advanced to the next record, which happens to be

(4333434|1123462|6). Again we have a record from the same

user 4333434 in all lists and this occurrence of 4333434

satisfies the temporal ordering, and thus the pattern S. As a

result, user 4333434 is kept as a candidate in U . �

In cases where a spatial predicate Pi in Q is a user defined

area, then the above join algorithm has to materialize the

inverted-index list for the user defined area. This materialized



Seg1

(4333434|349|1112140|1)

Seg2

(4333434|125|1123456|3)
(4333434|349|1123459|3)

Fig. 5. Segmentation of phone user 4333434 into Seg1 and Seg2

list has entries from the set of inverted-index lists for the

coverage areas in the alphabet Σ which approximate the user

defined area. This can be done easily since records in each

inverted-index list in the coverage area are already ordered

by (phoneid,timestamp). Thus, the materialized list can be

computed on-the-fly by feeding the IJP algorithm with the

record that has the smallest (phoneid,timestamp) key among

the heads of the participating inverted-indexes.

(ii) Variable predicate evaluation: The second step of the

IJP algorithm evaluates the v variable predicates in Qv, over

the set of candidate phone users U generated in the first step.

For a fixed predicate its corresponding inverted-index contains

all phone users that satisfy it. However, variable predicates

can be bound to any region, so one would have to look at all

inverted-indexes, which is not realistic. We will again need one

list for each variable predicate (termed variable-list), however

such variable-lists are not pre-computed (like the inverted-

indexes). Rather they are created on-the-fly using the candidate

phone users filtered from the fixed predicate evaluation step.

To populate a variable-list for a variable predicate Pi ∈
Sv we compute the possible assignments for variable Pi

by analyzing the inverted-index for each candidate phone

user. In particular, we use the time intervals in a candi-

date phone call record to identify which phone call record

of the phone user can be assigned to this particular vari-

able predicate. An example is shown in Figure 5 using

the candidate phone user 4333434. From the previous step

we know that 4333434 satisfies the fixed predicates at the

following regions: (M ,1112141), (D,1112150), (M ,1123462).

Using the pointers from the inverted-indexes of the pre-

vious step, we know where the matching regions are in

the inverted-index of phone user 4333434. As a result,

the phone user 4333434 can be conceptually partitioned

in two segments: phone call records that happen before

pM1
=(4333434|1112141|9) are stored in Seg1; and phone

call records that happen after pD=(4333434|1112150|15) and
before pM2

=(4333434|1123462|6) are stored in Seg2. Note

that records in between pM1
and pD do not need to be

considered.

These segments are used to create the variable-lists by

identifying the possible assignments for every variable. Since

a variable’s assignments need to maintain the pattern, each

variable is restricted by the two fixed predicates that appear

before and after the variable in the pattern. All variables

between two fixed predicates are first grouped together. Then

for every group of variables the corresponding segment (the

segment between two fixed predicates) is used to generate the

variable-lists for this group. Grouping is advantageous, since

it can create variable lists for multiple variables through the

same pass over the phone user segments. Moreover, it ensures

that the variables in the group maintain their order consistent

with the pattern S.
Assume that a group of variable predicates has w members.

Each segment that affects the variables of this group is then

streamed through a window of size w. The first w elements

of the phone user segment are placed in the corresponding

predicate lists for the variables. The first element in the

segment is then removed and the window shifts by one

position. This proceeds until the end of the segment is reached.

The generated variable-lists are then joined in a way similar

to the fixed predicate evaluation step. Because the variable-

lists are populated by records coming from the same user, the

join criteria checks only if the ordering of pattern S is obeyed.

In addition, if the pattern contains variables with the same

name, (e.g. two @x like in our example), the join condition

verifies that they are matched to the same region.

1) Temporal Predicate Evaluation: The IJP algorithm can

easily support explicit temporal predicates by incorporating

them as extra conditions in the join evaluations among the

list records. There are three cases for a temporal predicate:

(1) interval time (tfrom : tto); (2) snapshot time ts; or (3)

relative time tr.

For the interval and snapshot temporal predicates, the B+-

tree associated to the region in the spatial predicate can be

used to retrieve all phone call records that satisfy both spatial

and temporal predicates. For the interval all records that are

within the tfrom and tto, included, are retrieved, while for

the snapshot all records that match the ts temporal predicate

are retrieved. Another approach is to verify the interval or

snapshot temporal predicate for each phone call record while

processing the inverted-index associate to a spatial predicate,

without using the B+-tree. In the next section we show that

for some types of interval temporal predicates, evaluating the

interval time while processing the inverted-index in the IJP

algorithm is better than accessing the B+-tree index.

For the relative time predicate, there are two possible

strategies: (1) the straightforward way to evaluate it is, when

the spatial predicate is being evaluated, to check whether the

temporal predicate is satisfied, in the same way the Algorithm

works; (2) another approach is to just use the B+-tree to

retrieve all records that satisfy the temporal predicate for

Pi when the previous one Pi−1 was already evaluated. The

drawback of this second approach is that, every time a match

for Pi−1 occurs, a search on the B+-tree is performed. If

the number of matches for Pi−1 is high, so the number of

searches on the B+-tree, then the first approach become more

advantageous. Because the first approach is much simple and

seems to be more efficient most of the times, we decided to

always perform it when there is a relative temporal predicate.

2) Spatio-Temporal Constraints: The evaluation of spatio-

temporal constraints C can be performed as a post filtering

step after the pattern S evaluation is done. Other approaches

to verify the set of constraints while processing the spatial

predicates are also possible. Due to lack of space we omit

further discussions.



VI. EXPERIMENTAL EVALUATION

In this paper, we consider two real CDR databases. The first

one is a CDR database from an urban environment (hereafter

Urban Database) and the second one is a CDR database at a

state level (State Database). The first one is not a subset of

the second one. The BTS hopping option was not enabled in

either of the databases. The two databases differ regarding both

the number of BTSs that the infrastructure has and the spatio-

temporal information available for each user (number of calls,

frequency of calls, density of BTSs, etc.). This information is

to a large extent affected by the sociocultural characteristics

of the regions where the data was collected from. Also, these

differences deeply affect the number and characteristics of the

patterns that can be detected.

Regarding the Urban Database, cell phone CDRs for

300,000 anonymous customers from a single carrier for a

period of six months were obtained from a metropolitan area.

In order to select urban users, all phone calls from a set

of BTSs within the city were traced over a 2-week period

(sampling period) and the (anonymous) numbers that made

or received at least 3 calls per day from those BTSs were

selected. Although the selection of subscribers was carried out

in an urban environment, they could freely move anywhere

within the nation. In total there are around 50,000,000 entries

in the database considering voice, SMS and MMS. The BTS

database contained the position of 30,000 towers.

As for the State Database, we considered 500,000 users

from a state for a period of six months. No selection of users

was made, i.e. all users that made or received a phone call

from any BTS of that particular state during a six month

period were included in the database. In total there were

close to 30,000,000 entries in the database. The BTS database

contained the position of 20,000 towers.

We randomly sampled 500 phone numbers from each

database to generate sample queries. For each sampled phone

we then randomly selected fragments in its history of calls to

generate queries with varying number of predicates. Hence,

these queries return at least one entry in their respective

databases. For each experiment we measured the average query

running time and total number of I/O for 500 queries. The

query running time reports the average computational cost

(as the total wall-clock time, averaged over a number of

executions) for 500 queries. To maintain consistency, we set

page size equals to 4KBytes for indexes and data structures.

All experiments were performed on a Dual Intel Xeon E5540

2.53GHz running Linux 2.6.22 with 32 GBytes memory.

For evaluation purposes, we compared the IJP algorithm

against an extended version of the KMP algorithm proposed

in [20], which we call here Extended-KMP (E-KMP). The E-

KMP supports all spatio-temporal features proposed in our

language and process all phone users in the CDR database.

A. IJP vs KMP Comparison

In order to preserve details in all graphs, we decided to

suppress the E-KMP plots since the differences in performance

between E-KMP and IJP are very large. Instead, we describe
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Fig. 6. Total I/O and query runtime for spatial predicates

the results and comparison between both algorithms here in

this section. The number of I/O for the E-KMP execution

is constant in both databases since it performs a sequential

scanning of the phone archive. For the State database the

number of I/O is 1,788,384 per query, while for the Urban

it is 2,022,020. These values correspond to the total number

of data disk pages each database has. The E-KMP algorithm

performs at least 18 times more I/O than the IJP algorithm

(for patterns with 2 user defined area predicates with a large

number of BTS each for the Urban database). This difference

is bigger if pattern queries with only spatial predicates are

considered. For instance, the difference in total number of I/O

for patterns with 4 spatial predicates is 108 and 260 times for

the State and Urban database, respectively.

For the running time the E-KMP algorithm on its best

performance (patterns with 4 spatial predicates for the Urban

database) takes on average 853s per query. For the same set

of experiment the IJP takes on average only 0.85s per query,

which makes the IJP 1000 times faster than the E-KMP.

Even though the cost related to I/O operations is constant

when increasing the number of predicates for the E-KMP, the

running time is not. The total time to evaluate patterns with

larger number of predicates increases substantially due to the

fact that more predicates have to be evaluated for a match.

B. Patterns with Spatial Predicates

The first set of experiments evaluates patterns with different

number of spatial predicates. Figure 6 shows the number of

I/O (first row) and runtime time (second row) for 4, 8, 12

and 16 spatial predicates. For this kind of patterns only the

inverted indexes associated with the predicates in the pattern

are accessed. Increasing the number of spatial predicates in

the query also increases the number of I/O since more inverted

indexes are retrieved. Also, the number of entries to be joined

by the IJP algorithm increases, which makes the total time

increase. On the average 306 and 41 phone users, for the State

and Urban databases respectively, match a pattern.

C. Patterns with Variable Predicates

We also analyzed pattern queries with variables. We tested

patterns with 1 variable (Figure 7) and 2 variables (Figure 8),



varying the total number of spatial predicates from 2 to 14.

For instance, in the case of patterns with 16 predicates, two

query sets were generated: one with 1 variable and 15 spatial

predicates; and a second one with 2 variables and 12 spatial

predicates. The number of I/O for queries with 4 predicates

is bigger than for queries with more predicates for some

experiments. This is due to the fact that the CDR database

is accessed once a match is found after the IJP algorithm

evaluates the spatial predicates. This behavior is noticed in all

the experiments except for the Urban database for patterns

with 1 variable.
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Fig. 7. Total I/O and query runtime for patterns with 1 variable

The differences in the total number of I/O for patterns with

4 predicates increase substantially from 1 to 2 variables. This

is due to the fact that the number of spatial predicates drops

from 3 to 2, which makes the spatial predicate evaluation

phase of the IJP algorithm less selective (there are only 2

spatial predicates to filter out CDR entries that for sure do not

match the query). Therefore, more CDR entries are analyzed

in the variable predicate evaluation phase of the IJP. This

behavior also occurs, but with small differences, for patterns

with 8, 12 and 16 predicates. For these queries the spatial

predicate evaluation phase filters out more CDR candidates

than queries with only 4 predicates. Therefore, less accesses

associated to the phone database are performed, reflecting in

the total number of I/O shown in the graphs.

The addition of variable predicates in the pattern also

increases the number of matches per query. For instance, for

the Urban database, on average 41, 230 and 1200 phone users

match for patterns with only 4 spatial predicates, 3 spatial and

1 variable predicates, and 2 spatial and 2 variable predicates

respectively.

D. Patterns with User Defined Area Predicates

In order to evaluate patterns with user defined area predi-

cates, we generated 1 and 2 user defined area predicates by

swapping a spatial predicate with an area containing a set of

regions. This set of regions were selected by performing a

range query on the BTS locations with center in the original

spatial predicate location and a specific window size length.

We then swapped the original spatial predicate with the set of
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regions. We generated several query sets for different window

size lengths varying from 1 km to 5 km. For the Urban

database a user defined area predicate contain, on average,

2 regions for 1 Km window size length and 400 regions for

5 Km window size length. For the State database the average

number of areas selected is up to 130 regions.
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Fig. 9. Total I/O and query runtime for patterns with 1 defined area

Figure 9 and Figure 10 show the results for queries with

1 and 2 user defined area predicates, respectively, for dif-

ferent window size lengths. For large window sizes both

the total number of I/O and running time increase because

more inverted indexes associated to the user defined area

predicates are retrieved. Having many more entries in the

inverted indexes also increases the running time since more

entries are candidates to be merge-joined by the IJP algorithm.

The same behavior is noticed when increasing the number of

user defined area predicates from 1 to 2.

E. Patterns with Temporal Predicates

In the last set of experiments we evaluated patterns with in-

terval temporal predicates (Figure 11). We generated temporal

predicates from the original CDR fragments and then added

them to their correspondent spatial predicate. For each pattern

query all predicates have two components: a spatial and a
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Fig. 10. Total I/O and query runtime for patterns with 2 defined areas

temporal predicate. We then increased the interval in time in all

temporal predicates in order to select more candidate entries.

The interval values in each temporal predicate range from two

days to ten days covering the original timestamp of the CDR

database. We evaluated patterns with temporal predicates in

two ways (as explained in Section V): the first method (SEQ)

validates temporal predicates while processing each entry in

the inverted indexes; the second method (INDEX) employs

the B+-tree, for each spatial predicate, to first evaluate the

temporal predicate. In INDEX, entries that satisfy the temporal

predicate are further grouped by phoneid and then sorted by

timestamp to be further processed by the IJP algorithm.
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The total number of I/O for the SEQ method is constant

since, for each spatial predicate, all pages in the inverted

indexes are accessed. On the other hand, the number of I/O

for the INDEX approach is much smaller than SEQ since

only entries that satisfy the temporal predicates are retrieved.

The running time of the INDEX approach is worse than in

the SEQ method when increasing the interval time. This is

due the factor that many more entries retrieved by the B+-

tree need to be further sorted before being analyzed by the

IJP algorithm. The INDEX approach start to become more

appealing for temporal predicates with high selectivity (e.g.

temporal predicates with interval less than 1 hour (not shown

in the graphs)).

VII. CONCLUSIONS AND FUTURE WORK

The ability to detect and characterize mobility patterns using

CDR databases opens the door to a wide range of applications

ranging from urban planning to crime or virus spread. Nev-

ertheless, the spatio-temporal query systems proposed so far

cannot express the flexibility that such applications require. In

this paper we described the Spatio-Temporal Pattern System

(STPS) for processing spatio-temporal pattern queries over

mobile phone-call databases. STPS defines a language to ex-

press pattern queries which combine fixed and variable spatial

predicates with explicit and implicit temporal constraints. We

described the STPS index structures and algorithm in order

to efficiently process such pattern queries. The experimental

evaluation shows that the STPS can answer spatio-temporal

patterns very efficiently even for very large mobile phone-call

databases. Among the advantages of the STPS is that it can be

easily integrated in commercial telecommunication databases

and also be implemented in any current commercially available

RDBMS. As a next step we are extending the STPS to evaluate

continuous pattern queries for streaming phone-call data.
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