Assessing the Potential of Ride-Sharing Using Mobile and Social Data

Blerim Cici, Athina Markopoulou

Nikolaos Laoutaris, Enrique Frias-Martinez

Car Usage and Impact

o In USA*:

- Commuters: 132.3M

Driving alone: 79.9%

Impact

- Pollution
- Lost productivity
- High car expenses

^{*}Brian McKenzie, "Out of state and long commutes: 2011", American Community Survey Reports, 2011

Introducing Ride-Sharing

An Old Idea, yet ...

Challenges:

- Live/Work close by
- Similar schedules
- Avoid strangers

Opportunities:

- Smartphones
- Social media

An Old Idea, yet ...

Related Work

- H.-S. J. Tsao and D. Lin, "Spatial and temporal factors in estimating the potential of ride-sharing for demand reduction", California PATH Research Report, UCBITS-PRR-99-2, 1999.
- R.F. Teal. "Carpooling: Who, how and why.", Transportation, Research, 1987.
- W. He, D. Li, T. Zhang, L. An, M. Guo, and G. Chen. "Mining regular routes from gps data for ridesharing recommendations", In UrbComp. ACM, 2012.
- o R. Trasarti, F. Pinelli, M. Nanni, and F. Giannotti. "Mining mobility user profiles for car pooling". In Proc. UrbComp., ACM, 2011.
- A. M. Amey, J. P. Attanucci, "Real-Time Ridesharing: Exploring the Opportunities and Challenges of Designing a Technology-based Rideshare Trial for the MIT Community"

Goal: Assess Ride-Sharing Potential

- O Q: How many cars can be removed?
- Ideal Data:
 - For all people in a city
 - Full commuting trajectories
 - Willingness to share a ride
- Available Mobile and Social Datasets:
 - Large (but not entire) population
 - Samples of trajectories
 - (Parts of) social media graphs

Goal: Assess Ride-Sharing Potential

Q: How many cars can be removed?

Find an upper bound to the ridesharing potential

- Large (but not entire) population
- Samples of trajectories
- (Parts of) social media graphs

Outline

- Introduction
- Datasets
- Algorithms for Matching Users
- Results

Call Description Records (CDRs)

- Spatio-temporal:
 - Cell tower coordinates
 - Timestamps
- Social:
 - Calls among users
- Details:
 - Sept Dec 2009
 - Madrid: 820M calls, 5M users
 - Barcelona:465M calls, 2M users

Geo-tagged Tweets

- Spatio-temporal:
 - (lat,lng) coordinates
 - Timestamps
- Social:
 - Twitter Graph
- Details:
 - Nov '12 Feb '13
 - New York: 5.20M geotweets, 225K users
 - Los Angeles: 3.23M geotweets,155K users

Learning from Data 1: Home/Work Locations

- Methodology
 - Based on:
 - S. Isaacman, et. al., "Identifying Important Places in People's Lives from Cellular Network Data", Pervasive 2011
 - Ground truth (known home/work):
 - CDRs: Known industrial and residential areas
 - Geo-tweets: Foursquare
 - Train classifiers to identify home/work
- o Home and Work locations inferred:
 - Madrid (CDRs): 272,479
 - NY (Twitter): 71,977
- Home and Work distribution is NOT uniform
 - In contrast to related work:
 - H.-S. J. Tsao and D. Lin et al., ... 1999.

Learning from Data 2: Departure Times

- Exploit consecutive Home-Work calls
- Home-Work travel
 - Time: Online maps
- Similar for work departure times

Distance Function

$$d(v,u) = \begin{cases} h(v,u) + w(v,u), & \text{distance tolerance} \\ \text{IF} & \max(h(v,u),w(v,u)) \leq \delta \\ \text{AND} & \max(|LH(u) - LH(v)|, |LW(u) - LW(v)|) \leq \tau \\ \infty, & \text{otherwise} \end{cases}$$
 time tolerance

Problem Formulation

- Capacitated Facility Location with Unsplittable Demands:
 - Users : V
 - Drivers: S ⊆ V
 - Passengers: V S
 - Capacity: 4 users/car
 - Find:
 - Assignment a: (V S) → S
 - Minimize:

$$\sum_{u \in V} d(a(u), u) + \sum_{v \in S} p(v)$$
driver-passenger driver penalties distances

Algorithm: EndPoints RS

o Heuristic solution:

- Based on:
 - M. R. Korupolu et. al, "Analysis of a local search heuristic for facility location problems," Journal of Algorithms, 2000.
- Initial solution:
 - b-matching
- Iterative improvements
 - Scalability
 - Fixed local search steps
 - Fixed numbers of iterations
- Polynomial complexity
 - O(nlogn)+O(n) for initial solution
 - O(n) to evaluate solution

EndPoint RS for Madrid-CDRs

EndPoint RS for Madrid-CDRs

Algorithm: EnRoute RS

- o Home/Work paths:
 - Popular Online Maps
- o EnRoute RS:
 - Get the solution of EndPoints RS
 - Iterative improvements
 - Fill empty seats by pickups
- Spatio-temporal constr. intermediate points:
 - Same and point constraints

Algorithm: EnRoute RS

Learning from Data 3: Social Ties

o CDRs graph:

Nodes: Users

Edges: ≥ 1 call

o Geo-Tweets graph:

Nodes: Twitter ids

Edges: mutually declared friendship

Social Filtering

- o Friends:
 - Graph neighbors
- Sharing rides with:
 - Friends
 - Friend-of-friends

Results

Ride-sharing parameters:

- Time distribution: 30 min

Distance tolerance : 1 km

Delay tolerance : 10 min

City	Friends only	Friends of friends	Anybody
Madrid - CDR	1.1%	19% (31%)	53% (65%)
NY - Tweets	1.2%	8.2% (26%)	44% (68%)

Green numbers show potential of ride-sharing projected to commuters' population.

Conclusion

- High potential based on route overlap:
 - E.g. 53% for Madrid-CDR
- Bottleneck:
 - Willingness to ride-share
 - Riding ONLY with friends is too restrictive
- Technology and building trust:
 - Riding with friends of friends: up to 31% potential.
- Other lessons:
 - Lessons from data sets
 - Spatio-temporal constraints
 - Comparisons between cities

Thank You

Blerim Cici, Athina Markopoulou

Nikolaos Laoutaris, Enrique Frias-Martinez

