
On the Relation between Socio-Economic Status and Physical 
Mobility 
 

In emerging economies, the socio-economic status is a key element to evaluate 
social improvement as it provides an understanding of the population’s access 
to housing, education, health or basic services like water and electricity. The 
relationship between such indicators and human physical mobility has been 
researched mostly in areas like access to medical infrastructures and public 
transportation.  However, such studies have been limited in scope mostly due 
to the lack of large scale human mobility information. Nevertheless, the recent 
adoption of cell phones by large social groups in emerging economies has 
made it possible to capture large scale data about human physical mobility, 
which combined with regional socio-economic levels, allows to study the 
relationship between socio-economic indices and human mobility. In this paper 
we study the relationship between mobility variables and socio-economic 
levels using cell phone traces. Our results indicate that populations with higher 
socio-economic levels are strongly linked to larger mobility ranges than 
populations from lower socio-economic status. Finally, we also present a 
model that formalizes our findings on the relation between socio-economic 
levels and human mobility. 
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1. INTRODUCTION 
 
The socio-economic status is an index used in the social sciences to characterize an 
individual or a household economic and social position relative to the rest of the 
society, and is typically computed as a combination of variables that act as proxies to 
the underlying social and economic realities. The relation between human mobility 
and socio-economic status has been studied in a variety of scenarios, mainly related to 
access to health services and public transportation. In fact, research has shown that 
socio-economic levels might be correlated to travel distance, access to health clinics 
or energy consumption [1, 2]. The vast majority of these studies suffer from two 
important limitations: (1) they approximate human mobility through the use of proxy 
data such as public transport routes [10] or by tracking the travels of dollar bills [9]; 
and (2) the majority of these studies are based on qualitative and quantitative 
interviews with individuals, which highly limits the scope of the study and might bias 
the data. As a result, to date, the relation between human mobility and socio-economic 
levels has not been clearly measured, mainly because of the difficulty to obtain direct 
human mobility data from a sufficiently large number of individuals. 
 
Nevertheless, the recent adoption of ubiquitous computing technologies by a very 

large portion of the population has enabled the capture large scale quantitative data 
about individual human mobility. In this context, mobile phones play a key role as 
sensors of human behavior as these are typically owned by individuals that carry them 
at –almost– all times. As a result, most of the recent large scale quantitative data 
about human mobility has been gathered via Call Detail Records (CDRs hereafter) 
from cell phone networks. This fact is also true for emerging economies where, in the 
last 10 years, the penetration rate of cell phones has experienced a steady growth, 
even surpassing landline infrastructures. For example, recent studies carried out by 
the International Telecommunication Union (ITU), show penetration rates of 96% in 
Venezuela, 42% in Kenya and 30% in India, as well as ratios of mobile cellular 
subscriptions to fixed telephone lines of 4.3:1, 25.2:1 or 9.2:1 respectively [3]. Just in 
Africa, in 2008, the number of mobile phone subscribers surpassed the number in 
North America. The pervasiveness of cell phones in emerging countries across Asia, 
Africa and Latin America has promoted the creation of cell phone-based services 
specifically designed to tackle emerging problems in areas like health, education or 
agriculture. In fact, there are many examples of successful cell phone-based services 
for emerging economies such as the Village Phone initiative, which allows to generate 
profit from cell phone rentals [15]; txtEagle that is based on crowd-sourcing 
techniques and generates revenues through the execution of small tasks [16]; 
EducaMovil, that provides educational contents through games for children in low-
resource and isolated schools [17] or mobile health solutions like E-IMCI to improve 
treatment adherence in low-income areas [18]. For these reasons, it is fair to say that 
in many countries cell phones constitute an important part of the citizen’s livelihoods. 
 
In this paper we analyze the relation between socio-economic levels and human 

mobility by characterizing human mobility with a set of variables measured from the 
information contained in cell phone call detail records. The CDRs used for our 
analysis have been managed at an aggregated level and have also been encrypted to 
preserve privacy. Our findings are relevant for a variety of areas in policy design for 
emerging economies, ranging from transport planning to virus spreading containment. 
 



     Additionally, we use these results to predict the socio-economic level of a 
geographical area using the mobility information of the individuals that live within 
that domain. In fact, although the availability of socio-economic data is common in 
developed nations, that is not the case for emerging economies where the information 
is not necessarily as available, and/or economic activities might happen informally. 
As a result, the identification of socio-economic levels in emerging economies is 
more complex and less reliable than in developed economies. Although this limitation 
can be overcome with national surveys that capture income, education and consumer 
goods to identify socio-economic status, these surveys tend to be time and resource 
intensive as well as expensive. Being able to analyze the distribution of socio-
economic status is a key element for policy design, outcome evaluation and impact 
assessment. As a result it is very relevant for developing economies to have means to 
effectively capture data on the incomes of their populations, and its evolution over 
time, in a cost-effective fashion. In this paper, we present a mathematical model that 
approximately computes socio-economic levels based on human mobility variables. 
This approach should be viewed as a complement to traditional approaches of 
evaluating socio-economic status of populations in a low-cost and efficient manner. 
 
      The rest of the paper is organized as follows: first we present the related work. 
The following section describes the main characteristics of the datasets used in our 
analysis, both the call detail records and the socio-economic information available. 
After that, we describe the aggregation and matching techniques to combine CDRs 
and socio-economic levels and explain the methodology used to evaluate the impact 
that socio-economic levels might have on human mobility. The results section details 
our findings on the relation between socio-economic levels and mobility variables and 
presents a mathematical model that formalizes these findings. 
 
 
2. RELATED WORK 
 
A few studies have measured strong relationships between socio-economic levels and 
human mobility at specific scenarios such as access to hospitals [1]; travel patterns 
[4]; rural-urban differences regarding cancer [2] or travel behavior of inter-city bus 
passengers [5]. These studies tend to use proxies of mobility and are based on small-
scale surveys or focus groups. However, to the best of our knowledge there are no 
studies that measure the impact of socio-economic levels (SEL) on individual human 
physical mobility at the large scale we propose. 
 
      Related research has also compared mobility variables between a developed and 
an emerging economy [6]. The difference with our study is that while in [6] the socio-
economic levels are implicitly derived from the country where the data originates; in 
this paper we make use of country-based household survey data to determine socio-
economic levels. Eagle et al. [7] studied the relation between socio-economic levels 
and social network diversity using also cell phone records and regional social 
development indicators in the UK. Their findings indicate that social network 
diversity seems to be a very strong indicator of the development of large online social 
communities. Compared to this work, our paper provides a more granular study and 
focuses on mobility variables instead of online social networks.    
 



 
 
 
3. EXPERIMENTAL SETTING 
 
In this section, we first describe how cell phone networks work and how the call 
records are captured within the network. Next, we introduce the mobility variables 
that we use to characterize physical mobility in our work, followed by a description of 
the dataset with the cell phone records and a brief analysis of the mobility variables 
across the population under study. Finally, we describe the dataset that contains the 
socio-economic levels and its main characteristics. 
 
3.1 CELL PHONE TRACES 
 
Cell phone networks are built using a set of base transceiver stations (BTS) that are in 
charge of communicating cell phone devices with the network. Each BTS has a 
geographical location typically expressed by its latitude and longitude. The area 
covered by a BTS tower is called a cell. At any given moment, a cell phone can be 
covered by one or more BTSs. Whenever an individual makes a phone call, the call is 
routed through a BTS in the area of coverage. The BTS is assigned depending on the 
network traffic and on the geographic position of the individual. The geographical 
area covered by a BTS ranges from less than one km² in dense urban areas to more 
than three km² in rural areas. For simplicity, we assume that the cell of each BTS 
tower is a two-dimensional non-overlapping region and we use Voronoi diagrams to 
define the area of coverage of each individual BTS. (Figure 1) presents on the left a 
set of BTSs with the original coverage of each cell, and on the right the approximated 
coverage computed using Voronoi.  
 
 
   [Figure 1] 
 
 
      CDR (Call Detail Record) databases are generated when a mobile phone 
connected to the network makes or receives a phone call or uses a service (e.g., SMS, 
MMS, etc.). In the process, and for invoice purposes, the information regarding the 
time and the BTS tower where the user was located when the call was initiated is 
logged, which gives an indication of the geographical position of a user at a given 
moment in time. Note that no information about the exact position of a user in a cell is 
known. From all the information contained in a CDR, our study considered the 
encrypted originating number, the encrypted destination number, the time and date of 
the call, the duration of the call, the BTS that the cell phone was connected to when 
the call was placed and the BTS tower that the cell phone was connected to when the 
call finished. 
 
3.2. MOBILITY VARIABLES 
 
In order to characterize the average mobility of the individuals living in the area of 
coverage of a BTS, we first compute a set of mobility variables for each individual 
and after that we aggregate these variables at a BTS level. The CDRs were used to 
compute the following variables that characterize individual mobility: 



 
● Distance travelled between phone calls (weekly average): is the distance travelled 

by a user between consecutive calls. For a pair of calls, it is computed as the distance 
between the coordinates (latitude,longitude) of the tower where the first call ended 
and the coordinates (latitude,longitude) of the tower where the following call started. 
This distance approximates the route that the user has followed. 
 
● Distance travelled during a phone call (weekly average): is obtained as the 

distance between the BTS (latitude,longitude) where the cell phone call started and 
the BTS (latitude,longitude) where the cell phone call ended, and is an indication of 
the mobility of an individual. Note that in 60% of the cases there is no mobility during 
a phone call i.e., the phone call starts and ends in the same geographic area (BTS). 
 

● Total Distance travelled (weekly average): the total distance travelled by an 
individual is obtained by adding the distance travelled between phone calls for each 
pair of two consecutive calls/SMS/MMS with the distance travelled during each 
phone call as explained in the previous definitions. 
 

● Diameter of the Area of Influence (weekly average): The area of influence of an 
individual is defined as the geographical area where a user spends his/her time doing 
his/her daily activities. It is computed as the maximum distance (in kilometers) 
between the set of BTSs used to make/receive all calls during the temporal period 
under study (in our case each week). Formally, being }{ iBTS  (i=1:n) the set of BTSs 
used in the period of time considered, the diameter is defined as 

):1,()),(max( njiBTSBTSdist ji =∀ . Note that a user can have a diameter of 0 if 

all the calls in the period of time considered are placed though the same BTS. 
 
● Radius of gyration (weekly average): while in the previous mobility variable all 

BTSs are considered to be equally important, in the radius of gyration each BTS is 
weighted by the number of phone calls placed or received at it, and the radius is 
obtained by computing the centre of masses across all the weighted BTSs. Gonzalez 
et al. [12] and Song et al. [13] use the radius of gyration to describe the typical range 
of a user trajectory in their studies. The authors showed that individuals tend to 
typically move between two BTS and thus determined that this variable could be a 
good approximation of the distance between home and work. For each user, the radius 
of gyration is defined as: 
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where ri with i=1,…,n(t)  is the position recorded as longitude and latitude of a BTS 
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● Number of different BTS towers used (weekly average): this variable is 

complementary to the diameter of the area of influence and the radius of gyration. In 



fact, it is possible to have small values for diameter and radius and a large number of 
BTSs, which would indicate that although the area where the user moves is not large, 
the user moves frequently within it. And vice versa, a user can show large areas of 
influence and a reduced number of BTSs, which would indicate that user activities 
concentrate on a limited number of distant geographical regions. 
 
   Finally, it is important to highlight that in order to map the socio-economic levels 

of different regions with human mobility we need to have an approximation of the 
geographical location of the residence of an individual. This residential location will 
allow us to correlate human mobility specific to certain geographical areas with their 
socio-economic levels. The residential location is only known for clients that have a 
contract with the carrier, which in the case of emerging economies accounts for less 
than 10% of the total population. Thus, in order to carry out large scale analyses, we 
need to approximate the residential location of the clients that use also the pre-paid 
option. For that purpose, we used a residential detection algorithm that assigns the 
residential location of an individual to the region covered by a specific BTS tower. 
The algorithm computes the residential location based on general calling patterns 
detected in cell phone records. For our particular case, the pattern that identifies the 
home location is given by the BTS with the highest number of handled calls between 
8pm and 12pm on Mondays, Tuesdays and Wednesdays. It is important to note that 
this pattern is highly influenced by the cultural factors of each country and cannot be 
generalized to other geographical areas. Details of the algorithm can be found in [8]. 
 

       Once each user is assigned a BTS as a residential location, we compute -for each 
BTS- the average of each mobility variable for all users whose residential location is 
at that same BTS. These averages represent the aggregate mobility behavior of the 
users that live in the geographical area covered by each BTS. 

3.3. MOBILITY DATASET   
 
For our study we collected the anonymized and encrypted CDR traces from a main 
city in an emerging economy1 over a period of six months, from February 2010 to 
July 2010 (company policy does not allow us to reveal the geographic origin of the 
data). The city was specifically selected due to its diversity in socio-economic levels. 
From all the individuals, only users with an average of two daily calls (made or 
received) were considered in order to filter those individuals with insufficient 
information to characterize their mobility.  
 
      The total number of users obtained after filtering was close to 500,000 which 
represents around 7% of the inhabitants of the city. Given that the CDRs are provided 
by a telecommunications company that is the main carrier in the region, it is fair to 
say that the 7% of the subscribers probably represent a large part of the population. 
The city considered has an area close to 1,500 km2 and is covered by 1,000 BTS 
towers.  Each geographical region has an average of 320 users (with a standard 
deviation of 165) and each BTS gives coverage to an average of 1620 interactions 

                                                 
1  Based on the 2009 International Monetary Fund (IMF) World Economic Outlook Country Classification 
www.imf.org/external/pubs/ft/weo/2009/02/weodata/groups.htm 



(voice/SMS/MMS) with a standard deviation of 604 over the period under study. In 
order to get a good understanding of the call records dataset, we next present a brief 
description of the mobility variables for the population under study.  
 
 

          [Figure 2] 
 
 
       (Figure 2) shows the CDF (Cumulative Distribution Function) for the average 
number of calls per day i.e., the percentage of subscribers (y axis) that have a 
minimum number of calls per day (x axis). We can observe that around 70% of cell 
phones make or receive less than two calls (SMS, MMS or voice) per day, while only 
the top 1% has more than 10 daily interactions on average. This behavior is typical of 
emerging economies, where cell phones are scarcely used when compared with 
developed nations. In fact, only around 20% of users in developed nations have less 
than two interactions per day (on average). As mentioned earlier, we only consider for 
analysis individuals with an average of at least 2 interactions per day. Although it 
might seem that such filter introduces a bias in the sample favoring wealthier 
individuals, our analysis will show that the proportion of socio-economic levels in our 
sample is maintained even after the filter is applied. 
 
     
    [Figure 3] 
    [Figure 4] 
    [Figure 5] 
    [Figure 6] 
 
 
      Next, we show some statistics related to the mobility variables computed for the 
users with at least an average of two calls per day. (Figure 3), (Figure 4), (Figure 5) 
and (Figure 6) present the CDF for the total distance travelled (averaged per week), 
average diameter of the area of influence (averaged weekly), average radius of 
gyration (per week) and the number of different BTSs used (weekly average), 
respectively. We do not show the CDFs for variables distance travelled between 
phone calls and distance travelled within a phone call given that these are indirectly 
shown in Figure 3.  
 
      (Figure 3) shows that the best part of individuals (70%) travel less than 100km on 
average per week, with just the top 3% travelling more than 500km. (Figure 4) reveals 
that the total distance travelled typically covers an area of influence with a diameter 
smaller than 50km i.e., 80% of individuals have a diameter of 50km or less. If we 
compare the diameter of the area of influence with the radius of gyration shown in 
(Figure 5), and considering that 2*radius=diameter, we observe that the radius of the 
area of influence is approximately twice as large as the radius of gyration across all 
socio-economic levels. In fact, approximately 80% of the individuals have a radius of 
gyration smaller than 10km. This indicates that the relation between the two variables 
is the same independently of the SEL i.e., across all SELs we observe the radius of the 
area where users carry out their daily activities is twice as large as the radius of the 
area covered when users go from home to work. Finally, (Figure 6) presents the CDF 



for the number of BTSs used weekly, which is an indirect indicator of mobility. In 
general, we see that the average individual uses less than 20 unique BTSs per week. 
Note that a small number of BTSs does not necessarily imply a small total distance 
travelled or a small area of influence or radius of gyration. BTSs are only an 
indication of the points of interest or areas visited by a user. 

3.4. SOCIO-ECONOMIC LEVELS 
 
The socio-economic levels (SELs) for the city under study were obtained from the 
corresponding National Institute of Statistics. These levels, gathered through national 
household surveys, give an indication of the social status of an individual relative to 
the rest of the individuals in the country.  
 
      In our particular case, the National Institute defines five SELs (A, B, C, D and E), 
with A being the highest. The SEL value is obtained from the combination of 134 
indicators such as the level of studies of the household members, the number of rooms 
in the house, the number of cell phones and land lines, computers, combined income, 
occupation of the members of the household, etc. The SELs are computed for each 
geographical region (GR) defined by the National Institute. Each GR has between one 
and three km². Our city under study is composed of 1,200 geographical regions as 
determined by the National Institute. It is important to highlight that the city does not 
have GRs with a socio-economic level E. The rest of SEL levels are as follows: A 
levels represent 8% of the GRs, B 22%, C 38% and D 32%. 
 
 
4. MATCHING MOBILITY DATA WITH SEL 
 
The datasets and variables described in the previous section provide aggregated 
human mobility characteristics at a BTS level and SELs that characterize 
geographical regions (GRs). In order to study the relationship between SELs and 
human physical mobility we first need to geographically map BTS coverage areas 
with GRs, in order to compute a SEL value for each area of coverage of each BTS.   
 
 
   [Figure 7] 
 
 
Formally, we seek to associate to the area of coverage (cell) of each BTS the set of 

GRs that are totally or partially included in it. Each GR within the cell of a BTS will 
have a weight associated to it. The weight represents the percentage of the BTS cell 
covered by each particular GR. A graphical example is shown in (Figure 7). (Figure 
7a) presents the set of GRs (00001 through 0005) defined by the National Statistics 
Institute. Each GR has an associated SEL value (A...D). (Figure 7b) represents, for the 
same geographical area, the BTS towers (ct1 though ct7) and their coverage 
approximated with Voronoi tessellation. Finally, (Figure 7c) shows the overlap 
between both representations. This mapping allows expressing the area of coverage of 
each BTS cell tower (ct) as a function of the GRs as follows:  
 

nni GRwGRwct ++= ...11                            (3)  



 
 where w1 represents the fraction of the GRi that partially covers a certain 
coverage area of BTS tower cti. Following the example in (Figure 7), ct1 is completely 
included in GR 0001 and as such n=1 and w1=1. The same reasoning applies to ct3. A 
more common scenario is ct4, which is partially covered by GR 00003, 00001 and 
00005 with n=3 and weights w1=0.68, w2=0.17 and w3=0.15. The process to obtain 
the mapping between the BTS coverage areas (cts) and the GRs uses a scan line 
algorithm to compute the numerical representations of each GR and BTS map [8]. 
These representations are then used to compute the fractions of the BTS coverage 
areas covered by each GR. A more detailed description of the algorithm can be found 
in [7]. 
 
Once each BTS tower is represented by a set of GRs and weights, we can assign a 

SEL value to each BTS in the city under study. To do so, we first assign numerical 
values to each SEL level as follows: A=100, B=75, C=50, D=25 and E=0, thus 
transforming the discrete SEL values into a [0-100] range. The final SEL value 
associated to a BTS can be obtained by computing Equation (3) with the numerical 
SEL values for each GR. Following the previous examples and assuming that the SEL 
of GRs 00001, 00005 and 00003 are respectively B, B and C, the SEL associated with 
BTS ct1 and ct3 will be 75, while the SEL associated with BTS ct4 will be 
0.68*75+0.17*50+0.15*75=70.75.  
 
 

[Figure 8] 
 
 
(Figure 8) shows the number of BTS towers with a specific socio-economic level 

in the city under study. The SELs are represented as a continuous range (0-100) and 
divided into bins of size 2.5. We observe that although the original data had GRs with 
SEL A, these are not present in the BTSs as a consequence of the mapping and 
weighting introduced by Formula (3). To obtain a BTS with a SEL A, its area of 
coverage would have to be completely defined by GRs with an A level, which does 
not happen in the city under study given the limited number of A level GRs present in 
our sample. Also because in the city under study there were no GRs with an E SEL, 
no BTS has a SEL value smaller that 25 (D). 

 
 
5. METHODOLOGY 
 
Once the mapping between SELs and BTSs has been done, each BTS can be 
characterized by the aggregated values of the human mobility variables and by a SEL 
value.  In order to understand the relationship between SELs and human mobility, we 
compute the Pearson’s correlation coefficient (noted as r) for each pair of SEL and 
mobility variable (six as defined in Section III) gathered from the 1,000 BTS towers 
in the city under study. The Pearson’s correlation coefficient is a measure, in the 
range [-1,+1], of the linear dependence between two variables, where  a value of 1 (or 
-1) implies that a linear equation describes the relationship between the two variables 
perfectly, and a value of 0 implies that there is no linear correlation between the 
variables. For our study only values of r in the range [1, 0.5) and (-0.5, -1] are 
considered relevant [14].  



 
  In order to validate the statistical significance of the correlation values, a p-value 

was computed by creating a t-statistic with n-2 degrees of freedom, where n is the 
number of BTS towers. Only those values of correlation with a significance of p<0.01 
are considered valid. For the pairs of SEL and mobility variables that have a p<0.01 
and an r in the range [1, 0.5) or (-0.5, -1] a linear least square method is applied to 
estimate the parameters of the linear regression model that explains the variance of 
the mobility variable with the SEL. The identification of the mobility variables that 
have a high correlation with SEL can be used as indicators of the socio-economic 
wealth of the population under study. 
 
 
6. RESULT ANALYSIS 
 
(Table 1) presents the Pearson’s correlation coefficients, ordered by its relevance, for 
each one of the mobility variables defined in Section III. All of the correlations had a 
p<0.01 probably due to the large amount of pairs (1,000) used to compute r. As can 
be seen, only three of the six mobility variables have an r value in the range [1, 0.5) 
or (-0.5, -1]: Number of different BTSs used, Radius of gyration and Diameter of the 
Area of Influence. The correlation coefficients for the other three variables show that 
there is no linear relation between the SEL and the distance travelled: total, during or 
between phone calls. This indicates that while an increase in the SEL is correlated to 
an increase in the radius of gyration, diameter of the area of influence and number of 
different BTSs used by an individual, such increase is not correlated to an increment 
in the total distance traveled i.e., individuals with higher socio-economic levels carry 
out their daily activities in larger geographical areas when compared with individuals 
with lower socio-economic levels, but this fact is not correlated with total travelled 
distances being larger. Additionally, it is important to highlight that these high 
correlations do not imply a causality relation between the SEL and each one of the 
variables i.e., having a large area of influence does not cause a high SEL or viceversa. 
 
 
    [Table 1] 
 
 
  (Figure 9), (Figure 10) and (Figure 11) depict the data points used for the 

correlation analysis (pairs of mobility variable vs. SEL obtained from each BTS) and 
the result of the linear regression for the variables: total number of BTSs used, the 
Radius of Gyration and the Diameter of the area of influence, respectively. The X axis 
represents the SEL expressed in the range [0,100] and the Y axis indicates kilometers 
(in (Figure 10) and (Figure 11)) or absolute number of towers in (Figure 9). Each 
Figure also shows the regression equation where X stands for the socio-economic 
level (SEL) and Y for the corresponding mobility variable. (Table 2) shows the 
average errors and average quadratic errors for each of the regressions. The three plots 
show that the majority of the data points are clustered around socio-economic levels C 
and D in accordance with the results presented in (Figure 8).  
 
    [Table 2] 



 
    [Figure 9] 
    [Figure 10] 
    [Figure 11] 
 
  The variable number of different BTSs used (depicted in (Figure 9)) shows that 

while lower socio-economic levels use around six different BTSs on average every 
week (an individual with a SEL of E will approximately use five), higher socio-
economic levels use a number of BTSs larger than eight, with an estimate that the 
number of BTSs used by an individual of SEL A is around nine. This result shows 
that higher SELs tend to visit more points of interest in the city than lower SELs, 
although this does not necessarily translate into traveling longer distances.  
 
   Regarding the radius of gyration, (Figure 10) shows that individuals with higher 

SEL tend to have a higher radius than individuals with lower SELs. In particular, 
while socio-economic levels C and D have a radius of gyration of approximately five 
to ten kilometers, individuals with socio-economic levels B and above have a radius 
of 13 km. or more. Using the regression equation, we can determine that individuals 
with an E SEL will have a radius of 3.8 km, while individuals with SEL A will have 
an approximate radius of 15 km. In any case, the values of radius of gyration are in 
accordance with the values presented in [12]. As for the diameter of influence, (Figure 
11) shows that while individuals from low socio-economic levels have a diameter 
between 20 and 30 km. (individuals with an E SEL have a diameter of 13km. using 
the regression equation), individuals with socio-economic levels B and above have a 
diameter larger than 35 km (individuals with a SEL of A would have a diameter of 46 
km.). The approximation given for A and E SELs is made under the assumption that 
for those cases the linear relation applies. 
 

6.1. IMPLICATIONS FOR PUBLIC POLICY DESIGN 
 
The previous results provide insights that might be useful for a variety of public 
policy fields. In this section, we present an analysis of these findings and its 
implications noting that they cannot be directly generalized to all emerging 
economies. In fact, our findings only hold for the particular city under study and 
cannot be directly extended to other cases. However, the methodology presented in 
this paper could potentially be used to replicate the analysis for other region given the 
necessary information is available. 
 

     Researchers have shown that the radius of gyration can be used as an indication of 
the distance between home and work [12]. Based on these findings and on the results 
shown in (Figure 10), we could hypothesize that individuals with higher SEL tend to 
live further away from their jobs than individuals with lower SELs since the 
geographical areas with high SELs have a radius three times larger than the areas with 
lower SELs. This fact could be caused by a variety of reasons, among others a limited 
public transportation infrastructure and the cost of having a car (1 car for every 8 
citizens for the city under study compared to 1 car for every 1.5 citizens in an average 
developed economy). In any case, this could be interpreted as an indication that 
neighborhoods with lower SELs are typically more isolated than their higher SEL 



counterparts which would imply that their inhabitants might have fewer opportunities 
to improve their quality of live since they are more geographically isolated. Thus, a 
strong public transportation infrastructure would highly important for improving 
quality of live as it opens opportunities to go beyond the original neighborhood where 
their daily activities take place and have access to jobs that are geographically located 
at larger distances.  Our research findings can be used to help in the design of public 
transportation infrastructure using the radius of gyration provided for each BTS. By 
correlating such information with, for example, the existing bus routes, we can 
identify the cells with lower radiuses that are not covered or are poorly covered by the 
public transportation system. These areas will have to be prioritized to provide 
citizens with access to a larger variety of professional opportunities in order to 
enhance their quality of life.  
 
      As opposed to the radius of gyration, the diameter of the area of influence 
considers all BTS towers equally important and as such, is a good indicator of the 
geographical area where all daily activities take place. We have observed that there is 
a difference of a factor of three between the diameter of influence in geographical 
areas with high SEL and areas with low SEL. The same considerations mentioned for 
the radius of gyration apply here, but can be generalized to all activities such as 
leisure or commercial activities i.e., areas with low SEL have smaller diameters of 
influence and thus a limited access to leisure or commercial activities located at larger 
distances that their high SEL counterpart. Thus, it is important to take into account the 
SEL distribution when designing public transportation infrastructures that give access 
to work and leisure opportunities, since these will probably increase the possibility of 
citizens moving up the economic ladder. 
 
      Finally, the diameter of the area of influence is a relevant indicator not only for 
public transport policies, but also for policies in the area of epidemic spreading 
control. In fact, the diameter can be used to measure the risk and the speed of the 
spread of a virus in a geographical area i.e., the larger the diameter, the larger the area 
where people move and interact with others, and thus the higher the risk of virus 
spreading [6]. Although the epidemic spreading might depend on a variety of 
variables such as incubation periods, transmission channels, education of the citizens 
or social relationships, the mobility patterns always influence the spreading process. 
Thus, from our analysis, we could determine that in areas with lower socio-economic 
levels it would be easier to contain the epidemic than in areas with higher SEL, where 
individuals carry out their daily activities in larger geographical areas. It is important 
to highlight that although these results provide important insights to model and 
analyze the spreading of specific epidemics (like HIV or flu) many other variables 
need to be taken into account to build a realistic spread simulation as presented in 
[19].  
 

6.2. SOCIO-ECONOMIC MODEL BASED ON PHYSICAL MOBILITY 
   
In this section we present a formal model that approximates socio-economic levels 
using only physical mobility information. In Section 5, we have shown that there 
exists a high correlation between the aggregated mobility variables at a BTS level and 
the SELs. This finding makes it possible to design a model to approximate SEL using 



physical mobility variables. Although a multivariate model using the variables with 
higher correlation to the SELs (different number of BTS, radius of gyration and 
diameter of the area of mobility) would seem like the best option, the high correlation 
among these three variables does not justify such approach. For that reason, we only 
use the mobility variable that has the highest correlation with the SELs (number of 
BTSs) to design the formal model. By reversing the linear regression model presented 
in (Figure 9), the SEL at a BTS level can be estimated as:   
 

  
  
with an adjusted R square value of  0.72. The equation will be valid for: 
 

  
 
   Nevertheless, for values smaller than 5.11 the SEL can be considered E and for 

values larger than 9.11 it can be considered A. As a result, Equation (4) presents a 
formal model or mechanism to estimate the SEL of the individuals that live in the area 
of coverage of a particular BTS by aggregating their mobility behavior and 
considering only one variable. This estimation is of great value for emerging 
economies where, as discussed in the Introduction, estimating the actual SEL of 
specific geographic regions can be difficult and/or expensive. 
 
 
7. CONCLUSIONS AND FUTURE WORK 
 
In this paper, we have studied the relation between socio-economic levels and a 
variety of physical mobility indicators. Although there are studies that measure the 
relation between SEL and human mobility in specific scenarios, such as access to 
hospital, cancer prevalence or access to public transport [1, 2, 4, 5], none of these 
studies have been able to directly measure human physical mobility and hence, their 
conclusions tend to be based on a limited number of individuals and on data obtained 
through interviews or small scale surveys. 
 
  By using cell phone records, we have at our disposal an almost unlimited number 

of individuals whose mobility data can be retrieved objectively without the need of 
interviews. After matching SEL with a group of six mobility variables at a BTS 
(aggregated) level we have identified three relevant correlations between SEL and the 
number of different BTS towers used, the radius of gyration and the diameter of the 
area of influence. All three cases share a pattern by which the increase in SEL follows 
a linear relation with the increase of the mobility variable. We have also discussed the 
potential of such analyses for public policy decision making in areas like transport 
planning or epidemiology. Additionally, we have presented a formal model that 
approximates the SEL of a geographic area from a unique mobility variable that 
characterizes the average cell phone usage of the citizens living in that area. This 
formal model might be used as a proxy to approximate regional SELs which in 
emerging economies can be difficult and costly to compute. 
 
  It is important to clarify that the implications and formal models presented in this 

SEL = 25 * Number_Different_BTSs -127,75    (4) 

5,11 <  Number_Different_BTSs < 9,11               (5) 



paper are not necessarily the same for other countries or even for other regions within 
the same country. Also, it would be very relevant to analyze the impact that changes 
in weekdays versus weekend physical mobility behaviors have in the analyses that we 
have presented in the paper. In principle, the same technique discussed here can be 
used to study the relation between SEL and a large variety of variables modeling how 
technology and specially cell phones are used at a scale and detail never done before 
(ranging from mobile internet access to characteristics of social networks).  
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Table 1. CORRELATION VALUES FOR EACH PAIR OF MOBILITY VARIABLE AND SEL 
ORDERED BY THEIR RELEVANCE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 1 

Correlation Value 

(SEL, Number of different BTS) 0.58 
(SEL, Radius of gyration) 0.54 

(SEL, Diameter of the Area of Influence) 0.53 
(SEL, Distance travelled between phone calls) 0.39 

(SEL, Total Distance travelled) 0.37 
(SEL, Distance travelled during a phone call) -0.11 

 

 



 
 
 
 
 
 

 
 
Table 2. AVERAGE ERROR AND QUADRATIC ERROR OF THE LINEAR 
REGRESSION FITTINGS FOR THE FOLLOWING VARIABLES: NUMBER OF 
DIFFERENT BTSs USED, AVERAGE DIAMETER OF THE AREA OF 
INFLUENCE AND AVERAGE RADIUS OF GYRATION.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data Points in the Fitting 
Average  
Quadratic 
Error 

 Average 
Error 

(SEL, Number of different BTS) 0.66  0.52 
(SEL, Radius of gyration) 6.42  1.66 

(SEL, Diameter of the Area of Influence) 58.14  4.95 
 



 
 
Figure 1.  (1a) Original coverage areas of BTSs and (1b) approximation of coverage 
areas by Voronoi diagram. 
 
 
 
 

 
 
Figure 2. CDF of the average number of calls per day.   
 
 
 
 
 
 
 
 
 
 
 



 
Figure 3. CDF of the total distance travelled (weekly average). 
 
 
 

 
 
Figure 4. CDF of the average diameter of the area of influence (weekly average). 
 
 
 
 
 
 
 



 

 
 
Figure 5. CDF of the average radius of gyration (weekly average). 
 
 
 
 
 



 
Figure 6. CDF of the number of BTSs used (weekly average). 
 
 

 
 
Figure 7.  (7a) Example of Geographical Regions (GR) that have a SEL associated; 
(7b) the same geographical areas with the BTS towers (coverage approximated with 
Voronoi tessellation) and (7c) the correspondence between GRs and BTS towers used 
by a scanning algorithm to assign a SEL to a BTS tower area. 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
Figure 8. Number of BTS towers for each SEL after applying the discrete to 
continuous transformation and divided into bins of size 2.5. 
 
 
 

 
 
Figure 9. Socio-economic level (SEL) in the X axis versus the weekly average of 
different number of BTSs used (Y axis) and the fit obtained from applying linear least 
squares regression. 
 
 
 
 
 
 
 
 



 
 
 
 
 

 
 
Figure 10. Socio-economic level (SEL) in the X axis versus the weekly average of the 
radius of gyration measured in km (Y axis) and the fit obtained from applying linear 
least squares regression. 
 
 
 
 

 
Figure 11. Socio-economic level (SEL) in the X axis versus the weekly average of the 
diameter of the area of influence measured in km (Y axis) and the fit obtained from 
applying linear least squares regression. 
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