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Abstract

Individuals generate vast amounts of geolocalized content through the use of

mobile social media applications. In this context, Twitter has become an im-

portant sensor of the interactions between individuals and their environment.

Building on this idea, the authors propose the use of geolocated tweets as

a complementary source of information for urban planning applications, fo-

cusing on the characterization of land use. The authors’ proposed technique

automatically determines land uses in urban areas by clustering geograph-

ical regions with similar tweeting activity patterns. Three case studies are

presented and validated for Manhattan, London and Madrid using Twitter

activity and land use information provided by the city planning departments.

Results indicate that geolocated tweets can be used as a powerful data source

for urban planning applications.
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1. Introduction

Cell phones have become one of the main sensors of human behavior,

thanks, among others, to their growing penetration and wealth of user appli-

cations such as Whatsapp, Facebook, Twitter, Foursquare or Flickr. From
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messaging to social networking, these tools are used by citizens on the go.

In fact, the mobile nature of cell phones promotes the use of such applica-

tions anytime, anywhere, thereby generating vast amounts of human behav-

ioral information. Additionally, many mobile social media applications allow

users to add geolocation information to their profiles or to the information

they share, enhancing the richness of the behavioral datasets. For example,

Twitter offers the possibility of recording the user’s geographical coordinates

each time a tweet is generated. From this perspective, there is a potential

use of using geolocated user-generated content as a complementary source of

information for urban planning applications.

Urban planning is a process that focuses on the control and on the de-

sign of urban environments in order to increase the well being of citizens.

An important concern in urban planing is the characterization of urban land

use. Such information is usually gathered through direct observation or using

questionnaires that attempt to capture how citizens interact with their urban

environment. Nevertheless, this approach has some limitations such as the

resiliency of citizens to provide such information or the cost of running ques-

tionnaires, which highly limits the frequency with which the information is

captured. Alternative approaches such as GIS (Geographic Information Sys-

tems) provide satellite imagery that might reveal some types of land use

information through image processing techniques. However, such techniques

fail to provide real time information as images are not captured frequently.

Here we present a novel approach for sensing urban land use that ex-

clusively makes use of spatial (geo-tagged) and temporal (time-stamped)

information, without accessing personal details or the content of the user-
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generated information. By doing so, our techniques preserve privacy and

can potentially be applied and/or complemented with any other mobile so-

cial media dataset with geolocation information. In order to validate to

which extent tweetting activity can be used to characterize urban land use,

we study three urban environments: Manhattan (NYC), London (UK) and

Madrid (Spain) using geolocated tweets and land use information provided

by city planning departments.

2. Related Work

Our work arises as a combination of two smart cities research areas mainly

crowd modeling and urban computing for urban planning. Different authors

have used a variety of user-generated content services for implementing such

solutions. Wakamiya et al. [1] and Fujisaka et al. [2] studied how to exploit

geotagged tweets and the semantics of its content to interpret individual and

crowd behavior i.e., how individuals and groups of people move across ge-

ographical areas. They propose models of aggregation and dispersion as a

proxy to understand the bursty nature of human mobility. Similarly, Kin-

sella et al. [3] used geolocated tweets, together with their content, to create

language models at varying levels of granularity (from zip codes to coun-

tries). The authors use these models to predict both the location of the

tweet and the user based on location changes. There are interesting results

using geotagged information from Foursquare and Flickr to model land use

in urban environments. For example, Noulas et al. [4] have used the geolo-

cated information provided by Foursquare to model crowd activity patterns

in London and New York City using spectral clustering. For that purpose,
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the authors characterize the activity patterns identified by the clusters using

the predefined Foursquare categories that give an indication of the type of

check-in location (restaurants, academic, etc.). As such, this approach gives

an approximated understanding of land use. In a related work Cranshaw et

al. [5] present a new clustering model designted to study social dynamics on

a large scale using two FourSquare datasets. The results are validated with

personal interviews that confirm the clusters identified.

3. Sensing Urban Land Uses using Twitter

The identification of urban land uses from geotagged tweets using the

spatial (localization) and temporal (timestamp) information has two steps:

land segmentation and land use detection.

3.1. Land Segmentation with Geotagged Data

Given that we want to sense land uses in different urban regions, the first

step consists on partitioning the land into different segments, which can then

be characterized by its tweet usage. The partitioning of the area considered

has to preserve the topological properties of the geolocalized tweets, while

respecting the actual shape of the geographical area under study.

We approached this problem using Self-Organizing Maps (SOM) [6], which

reduce the input data dimensionality to be able to represent its distribution

as a map. In our case, the input data are the latitude & longitude pairs that

represent the geolocalized tweets over a period of time for a specific urban

area. Thus, we use a SOM to build a map that segments the urban land into

geographical areas with different concentrations of tweets.
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The SOM consists of a collection of N neurons organized in a grid [p, q],

with N = p ∗ q. Since we can choose any initial size [p, q] for the map, our

method explores different map sizes and selects as the best land segmentation

map the topology that minimizes the Davies-Bouldin clustering index [7]:

DB =
1

n

n
∑

i=1

max
i 6=j

(

σi + σj

d(wi, wj)

)

(1)

The DB index is chosen because the partition with minimum DB value will

minimize the maximum sum of a pair of standard deviations σi and σj i 6= j

and maximize the distance between cluster representatives, ensuring that

even the most disperse clusters concentrate its points (geolocated tweets)

inside a compact cluster.

As a result of the process, we obtain a map where each neuron represents

a pointer to a region with a high density of tweets. Additionally, areas

with larger concentrations of tweets will have larger numbers of neurons

geographically located nearby. Finally, Voronoi tessellation is applied over

the location of the neurons in order to compute the land segments that each

neuron represents. These land segments are used as the elements for the

characterization of land use.

3.2. Detecting Urban Land Uses

We characterize each land segment by its average tweet activity, which

will then be used to identify common land uses across land segments. For

each land segment s, a tweet-activity vector Xs representing the average

tweetting behavior is built as:

1. An activity vector xs,n for land segment s is built for each day n =

1, ..., d in the twitter dataset.

5



2. Each day n in the activity vector contains 72 components xs,d(t), t =

1, ..., 72 where each one represents the number of tweets generated in

land segment s during a 20-minute interval t in day d.

3. An average activity vector for land segment s is computed for both

weekdays Xs,wkd and weekends Xs,wkn as Xs,wkd(t) =
∑d

n=1
xs,n(t)

n
, t =

1, ..., 72 where n is a weekday and Xs,wkn(t) =
∑d

n=1
xs,n(t)

n
, t = 1, ..., 72

where n is a weekend day.

4. The final activity vector is represented as the concatenation of weekday

and weekend average activity vectors Xs = {Xs,wkd, Xs,wkn} and is

normalized as:

X̂s(t) =
Xs(t)

∑72
t=1Xs,wkd(t) +

∑72
t=1 Xs,wkn(t)

. (2)

After this process, each land segment s is represented by a unique activity

vector Xs with 144 elements representing the average weekday and weekend

tweeting activity computed in 20-minute timeslots. These activity vectors

are used to automatically identify and characterize urban land uses using

spectral clustering to reveal clusters of common tweeting behaviors across

land segments [8, 4]. We posit that the land use can be derived from a careful

analysis of the tweeting behaviors in each cluster, based on its activity vector

as well as on its physical layout in the city.

Spectral clustering treats the data clustering as a graph partitioning prob-

lem without any assumption on the form of the clusters. It starts by con-

structing a similarity graph (D) and a weight matrix (W) which are then used

to construct a Laplacian matrix L. The algorithms performs a dimensional-

ity reduction and then it applies a clustering algorithm, typically k-means.
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Dataset

Total Mean Area(km2) Density (tweets/km2)

World 24130423 492457.61 - -

Manhattan 247381 5048.59 60 84.13

London 312513 6377.81 150 42.51

Madrid 46931 957.77 88 10.88

Table 1: Dataset Characteristics

In order to identify the number of clusters k eigengap detection is specially

suited. With this approach the number of clusters k is defined by the point

where there is a drop in the magnitude of the eigenvalues of the Laplacian

matrix arranged in increasing order. Once the best value of k is selected, the

method outputs the clusters of land segments.

In order to analyze the type of land use associated to each cluster, we

average the activity vectors of all the land segments in the cluster and com-

pute an average activity vector that represents the tweeting activity for that

cluster. Finally, we hypothesize the land use for each cluster based on its

tweeting activity and its distribution across the urban environment under

study.

4. Evaluation of Land Uses

We present an evaluation of our land use detection method for three cities:

Manhattan (NYC), London (UK) and Madrid (Spain). We have selected

these three cities because they show different densities of Twitter activity

computed as the number of daily tweets per square kilometer in the urban
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perimeter considered: Manhattan has the highest Twitter density (84.13

tweets/km2) followed by London with about half of that (42.51 tweets/km2)

and Madrid with a density of 10.88 tweets per square kilometer. As such,

these three cities represent different cultural and behavioral Twitter attitudes

useful to evaluate our propossed aproach.

The objective of this evaluation is twofold: (1) to analyze to which extent

the land use identification algorithm detects different types of land uses and

(2) to understand the impact of the density of tweets on the accuracy of

the method proposed. For that purpose, we apply the algorithm on datasets

of Twitter activity from each one of the three cities considered and draw

hypothesis regarding land uses based on both cluster tweeting activity and

their location. To validate our results, we contrast our clusters and land uses

hypotheses against real land use information collected by the corresponding

city planning department.

4.1. Twitter Datasets

Twitter users are allowed to tag tweets with their current geospatial lo-

cation. Specifically, users can set their geographical location by specifying

a city or region by themselves or by allowing Twitter to track their GPS

longitude and latitude coordinates. When a new tweet is produced, Twitter

records the geographical information of the user at that moment, along with

a variety of other meta data. Given that we want to model land use within an

urban environment, we require highly granular geolocations. Thus, we only

collect tweets whose location is automatically recorded by Twitter through

the GPS and not self-reported by the user.

We used the Twitter Streaming API [9] to gather geolocalized tweets in

8



near real-time. The streaming API enables a high-throughput stream to be

established with Twitter by which a large volume of public statuses of tweets

can be gathered. Specifically, the Twitter steaming API provides a sample

of all tweet public statuses, currently about one percent of the full Firehose

set of tweets. Our final Twitter dataset consists of 49 days (seven weeks)

of geolocated tweets worldwide from October 25th to December 12th, 2010.

Although our study focuses on Manhattan, London and Madrid, we collected

tweets worldwide mostly for sanity purposes.

Table 1 shows the general statistics for the dataset collected describing

the total and average daily number of geotagged tweets worldwide as well

as individually for Manhattan, London and Madrid during the period un-

der study in 2010. We also show the Twitter activity densities for each of

the cities. The geographical area for London is defined by the area within

Ringway 1. As for Madrid, we consider the urban area comprised within the

M − 30 highway.

4.2. Land Segmentation and Land Use Clustering

Our method trains a SOM with the set of geolocated tweets to divide

the urban area under study into different land segments s characterized by

their tweeting activity vector Xs. Given the different geographies of the cities

under study, we evaluated N in the range N = [10, ..., 300] with N defined

as N = p · q p, q > 1, p, q ∈ N. The values of p and q define the number

of neurons considered in each axis: p in the north-south axis and q in the

east-west axis (we leave out the cases where N is a prime number). To adjust

the neurons to the shape of each city, we only consider cases in which p > q

for Manhattan and Madrid and p < q for London (Manhattan and Madrid
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have a longer north-sout axis and London has a longer east-west axis). For

example, in Manhattan N = 10 would define an initial grid with p = 5 and

q = 2 and and n = 12 would generate (p = 6, q = 2) and (p = 4, q = 3).

Due to the randomized nature of the SOM training stage, 100 SOMs

are trained for each city and each pair (p, q) with N = p ∗ q ∈ [10, ..., 300]

and their average DB index is computed. The minimum DB index was

associated to N = 64 for Manhattan with p = 16 and q = 4; N = 168

for London with p = 12 and q = 14; and finally N = 91 for Madrid with

p = 7 and q = 13. As an example, Figure 1 shows the land segmentation for

Manhattan. We observe that the Midtown area, where the best part of the

tweets are geolocated (as shown in Figure 1(left)), shows a high density of

neurons; whereas the north of Manhattan, with a scarce number of tweets,

has a much smaller number of neurons. Finally, the land segmentation is

computed by applying Voronoi tessellation [10] to each SOM centroid in the

two-dimensional space as shown in Figure 1(right). Notice that areas with

larger polygons represent areas with reduced Twitter activity.

Each one of the land segments identified in Manhattan, London and

Madrid is characterized by its Twitter activity vector Xs which has 144

components, the first 72 describe the tweeting activity during an average

weekday and the last 72 the activity during and average weekend day. Our

method uses the set of Xs vectors to identify different land uses for each city

separately identifying clusters of similar normalized activity using spectral

clustering. Following the eigenvector detection approach, the best number of

land segment clusters is identified as k = 4 for Manhattan, k = 5 for London

and k = 4 for Madrid.
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(a) (b) (c)

Figure 1: Land segmentation for Manhattan: (left) data points, (center) centers of activity

computed with SOM and (right) Voronoi tessellation.
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In order to understand the types of land uses identified by these clusters,

we analyze the class representatives for each cluster together with its geo-

graphical distribution over the city map. A combined analysis can be used

to provide a hypothesis about the potential types of land uses. Figure 2

presents the class representatives for each of the clusters identified across the

three cities. Each representative or behavioral signature is computed as the

average number of hourly tweets and is normalized per cluster and per city.

For analytical purposes, we group the signatures across cities by euclidean

similarity. We hypothesize that signatures that share similar shapes across

cities represent comparable land use types.

We observe that the activity vectors in Cluster 1 are generally charac-

terized by a larger tweetting activity during weekdays than weekends (see

Figure 2(a)). During weekdays the highest tweeting activity is reached at

around 9:30PM, 13:00PM and 8:30PM for Manhattan, which might be asso-

ciated to the times at which people typically get to work, go for lunch, and

leave work. The city of London shows similar peaks but slightly shifted in

time. In the case of Madrid, the signature is shifted even more, suggesting

that working hours might happen a little bit later during the day. The peak

of the tweeting activity during the weekends is reduced by approximately

40% when compared to weekdays. In terms of geolocation of the clusters,

these cover, among others, areas like Battery Park or Wall Street in Manhat-

tan(see Figure 3 , the City and Canary Warf in London (see Figure 5 and the

sorroundings of Castellana and the area of AZCA in Madrid (see Figure 4),

all areas heavely associated with business/office activities. For these reasons,

we hypothesize that the geographical area covered by this cluster represents
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(a) Cluster Type1: Business (b) Cluster Type 2:

Leisure/Weekend

(c) Cluster Type 3: Nightlife (d) Cluster Type 4: Residential

(e) Cluster Type 5: Industrial

Figure 2: Tweeting activity signatures per cluster for Manhattan, London and Madrid.

The Y axis represents the normalized tweeting activity and the X axis two 24-hour periods,

the first one for an average weekday and the second one for an average weekend.
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Figure 3: Physical layout of business, nightlife and leisure clusters in Manhattan. Areas

not marked with any color indicate residential land use.
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Figure 4: Physical layout of business, nightlife and leisure clusters in Madrid. Areas not

marked with any color indicate residential land use.
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Figure 5: Physical layout of business, nightlife, leisure and industrial clusters in London.

Areas not marked with any color indicate residential land use.
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Business areas in Manhattan, London and Madrid.

Cluster 2 shows a large difference between weekend and weekday ac-

tivity, in fact, the signature is almost doubled in volume (see Figure 2(b)).

During weekends tweeting activity increases until the afternoon to continue

in a constant decrease. Geographically, these clusters cover regions like Cen-

tral Park and nearby museums in Manhattan, Hyde Park or Regents Park in

London and El Retiro Park and Casa de Campo Recreational Park in Madrid.

Also included are heavily touristic areas, like Sol and the Flea Market of El

Rastro in Madrid, or the London Eye, Buckingham Palace and Covent Gar-

den in London. Thus, we hypothesize that this cluster can be associated to

Leisure or Weekend activities since users are active mostly during the week-

ends. However, we believe that it does not represent weekend nightlife since

the tweeting activity highly decreases after 16:00PM during the weekends.

On the other hand, Cluster 3 is associated to very large activity peaks at

night (see Figure 2(c)). These peaks happen at around 20:00-21:00PM during

weekdays and between 00:00-06:00AM during the weekends. We observe that

the peaks happen earlier in London and Manhattan while a little bit later in

Madrid suggesting that nightlife might continue until late hours in this city.

Studying the physical layout of these clusters on the city maps, we observe

that they cover areas like the East Village in Manhattan; the West End in

London and Malasana/Chueca and Alonso Martinez in Madrid (see Figure

4), areas associated with restaurants, pubs and discos. All these elements

suggest that this cluster might represent nightlife activities.

Cluster 4 shows a signature evently divided between weekends and

weekdays, where, during weekdays, there is a peak of activity in the afternoon

17



between 6pm and 8pm depending on the urban area considered (6pm for

Manhattan and London and 8pm for Madrid). Activity during weekends is

of the same magnitude as in weekdays (see Figure 2(d)). This is the most

important cluster considering the geographical area covered and the number

of clusters included. The geographic layout of the clusters cover heavily

residential areas in all cities: in Manhhatan the limits of the island, and in

Madrid and London the outskirts of the areas considered. In Figures 3, 4 and

5, the areas include with this cluster are the ones not marked with any color.

Our hypothesis for this type of signature is that it represents residential land

use with citizens tweeting from home at any time during the weekends and

after working hours during the week.

Finally, Cluster 5 is only identified for London (see Figure 2(e)). Its

signature is characterized by very little activity during the weekends. The

weekdays show a peak in activity very early, at around 10am, after which

a steady decrease happens showing little activity during the rest of the day.

Looking at the physical layout, these clusters cover areas in the east and sout

of the city, like the are around Battersea station and the Olympic park. As

a result of that, we hypothesize that this cluster represents Industrial land

use (see Figure 5).

Finally, it is important to clarify that we have only focused on identifying

the main land use of each cluster (although there might be other minor ones),

since this is the way urban planners typically compute land use

4.3. Land Use Validation

In order to validate our land use hypotheses, we compare the evaluation

results against official land use data released by the NYC Department of
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City Planning and the NYC Department of Parks&Recreation through the

NYC Open Data Initiative [11]; against the ward profiles released by the

London Datastore Open Data Initiative [12] and against the district land use

information computed by the Urban Planning Department in Madrid’s City

Hall [13]. These catalogs are produced by city agencies typically through a

combination of on-site inspections, interviews and questionnaires.

The NYC Department of City Planning considers four main land use

types: (1) residential, (2) commercial, (3) industrial and (4) parks&recreation

(see Figure 6(a) for details). On the other hand, the information provided by

the London Datastore considers three types of wards: (1) domestic buildings,

which we associate to residential areas, (2) non-domestic buildings, that we

pair up with business and industrial land use wards and (3) greenspace and

paths. Finally, the information provided by the Urban City Planning Depart-

ment in Madrid provides land use information at a district level and considers

four types: (1) residential at different density levels (which we group), (2)

industrial, (3) services(commercial&business) and (4) greenspaces, as can be

seen in Figure 6(b).

To understand how well the clusters we have identified using Twitter

activity represent the official land use areas, we evaluate the percentage of

overlapping that exists between the physical layout of the clusters and the

official land use map for each city under study. Such analysis will give us

an understanding of the accuracy of our approach to identify land uses as

well as of the impact that the Twitter density might have on the quality of

the results. It is important to highlight that the percentage of overlapping is

an approximate measure to validate land use identification given that both
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Official Land Use Twitter Land Use

Business Residential Nightlife Leisure&Weekend

Commercial 81% 13% 3% 2%

Residential 7% 68% 19% 4%

Industry 13% 77% 0% 6%

Parks&Recreation 6% 7% 6% 81%

Table 2: Manhattan: Percentage of overlap between official land uses and Twitter land

uses.

Official Land Use Twitter Land Use

Business Residential Nightlife Leisure&Weekend Industrial

Non− domestic buildings 61% 9% 3% 2% 25%

Domestic buildings 9% 56% 23% 6% 6%

Greenspace&Paths 8% 11% 7% 72% 2%

Table 3: London: Percentage of overlap between official land uses and Twitter land uses.

maps have different granularities: our cluster maps represent land segment

clusters based on Voronoi and tweet density whereas the official land use

maps show data at a block, ward or district level, depending on the city.

Tables 2, 3 and 4 show the percentages of overlap between the official land

use maps for each city (rows) and our land use hypotheses (columns). Each

element (i, j) in the tables represents the percentage of the official land use

region that is covered by one of our land use clusters i.e., Business, Residen-

tial, Nightlife, Leisure and Industrial. Note that in the case of Manhattan

our Voronoi approximation to the island does not precisely cover all Man-
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(a) Manhattan official land

uses: Commercial, Residential,

Industrial and Parks&Leisure

official.

(b) Madrid official land uses: Com-

mercial&Business, Residential ( differ-

ent densities considered), Industrial and

Greespaces.

(c) Manhat-

tan:Community

Districts with Noise

Complaints from the

NYC 311 Service (red

represents the highest

number of complaints)

Figure 6: Official Land Use Maps for Manhattan (a) and Madrid (b) and (c) Number of

noise complaints in Manhattan per district.21



Official Land Use Twitter Land Use

Business Residential Nightlife Leisure&Weekend

Commercial&Business 69% 25% 4% 2%

Residential 11% 61% 18% 10%

Industry 58% 33% 3% 6%

Greenspace 7% 16% 6% 71%

Table 4: Madrid: Percentage of overlap between official land uses and Twitter land uses.

hattan land due to its irregularities, and as a result the percentages does not

exactly sum up to 100%. Comparing our results across cities, we observe

that Manhattan shows the highest percentages of official areas covered by

our clusters, whereas London and Madrid share lower accuracies in terms of

land use identification. It appears that the higher tweeting density that Man-

hattan has (84.13/km2) has, as expected, a positive impact on the quality

of land use identification.

The official Commercial and Business land uses in the three cities are

identified quite well by our business cluster with area coverages between

61% − 81%. London is a special case in which the official non-residential

land use is partially identified by our business cluster (61%) but also by our

industrial cluster (25%). Similarly, the official Residential/Domestic build-

ings land use has a high overlap with our residential cluster with coverages

between 56% and 68% of the official areas. However, we observe a generalized

trend across the three cities whereby around a 20% of the official residential

area is also covered by our nightlife clusters, probably highlighting residential

areas with high densities of bars and restaurants. This is in fact common
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in areas like the East Village in New York, Chelsea in London or Chueca in

Madrid.

While in London we are able to detect Industrial land use, and compare it

to the oficial non-residential land use, the official Industry land use, present

in Manhattan and in Madrid, goes undetected. We consider that the main

reason for that is that in both cases, within the area of the city considered,

industrial land is minimum (less than 3% of the total area in Madrid and less

that8% in Manhattam), and as a result they are included in larger Voronoi

elements that has a different stronger land use. In fact, most of the offi-

cial industrial land use is subsumed by our residential cluster in the case of

Manhattan whereas in Madrid it is mostly covered by our business cluster.

This might indicate that workers in the industrial areas are not using Twit-

ter as much as people that live and/or work in that area, and as a result

our technique captures the main land use, i.e. the oficial land use goes un-

detected due to lack of activity. Finally, the official Parks&Recreation and

Greenspace&Paths land use is identified by our leisure cluster with overlaps

between 71% and 81% of the official land use maps.

On the other hand, our method identified a Nightlife cluster that has no

counterpart in any of the oficial land uses. Nighlife clusters mostly overlap

with the official Residential land use. However, we wanted to understand

whether the cluster is incorrect or whether it is modeling a different type

of land use not accounted for by the city halls. For the particular case of

Manhattan, we identified the number of noise complaints per community

district made to the 311 on-line service during 2010 (see Figure 6(c)). Given

that the community districts have much lower granularity than our land use
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clusters, we computed the percentage of the Nightlife cluster that is included

within the districts with the highest number of complaints, which corresponds

to an 82% of overlap. Thus, it is fair to say that the Nightlife cluster detected

by our method identifies a Nightlife land use that could be of interest for city

halls to model potential areas of noise complaints. We did not find such

validation information for London and Madrid.

Our evaluation and validation for three different cities with varied physical

layouts shows two important results. First, our methodology constitutes a

good complement to model and understand in an affordable and near real-

time manner land uses in urban environments. In fact, we have shown that

residential, commercial and parks&recreation areas are well identified with

coverages above 60%. Also, our approach is able to identify a land use,

nighlife activity, not being considered up to now by city halls. This has

implications from a planing perspective as this areas usually cause noise and

security problems and can move over time.

Second, the Twitter density or average number of tweets per square kilo-

meter appears to impact the accuracy of our land use identification approach.

As reported, coverage percentages of Manhattan, with a Twitter density of

84.13/km2 are slightly higher than those for London and Madrid with den-

sities of and 42.51/km2 and 10.88/km2, respectively. However, although the

accuracy of the land use detection is slightly lower, the results still offer

significant information for land urban planners.
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5. Conclusions

With the deployment of pervasive infrastructures and the increasing use

of geolocated user-generated content, urban planning will have a relevant and

real-time source of information for characterizing urban dynamics. We have

shown that geolocated tweets can constitute a good complement for urban

planners to model and understand in an affordable and near real-time manner

land uses in urban environments. We will continue to address this challenge

by expanding our methodology to other sources of geolocated information

exploring how to meaningfully combine multiple data sources for land use

identification.
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