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Abstract— The recent adoption of ubiquitous computing tech-
nologies has enabled capturing large amounts of human behav-
ioral data. The digital footprints computed from these datasets
provide information for the study of social and human dynamics,
including social networks and mobility patterns, key elements
for the effective modeling of virus spreading. Traditional epi-
demiologic models do not consider individual information and
hence have limited ability to capture the inherent complexity
of the disease spreading process. To overcome this limitation,
agent-based models have recently been proposed as an effective
approach to model virus spreading. However, most agent-based
approaches to date have not included real-life data to characterize
the agents’ behavior. In this paper we propose an agent-based
system that uses social interactions and individual mobility
patterns extracted from call detail records to accurately model
virus spreading. The proposed approach is applied to study the
2009 H1N1 outbreak in Mexico and to evaluate the impact
that government mandates had on the spreading of the virus.
Our simulations indicate that the restricted mobility due the
government mandates reduced by 10% the peak number of
individuals infected by the virus and postponed the peak of the
pandemic by two days.

I. INTRODUCTION

Planning for a pandemic (e.g., H1N1, influenza, etc.) is a
public health priority of any government. Traditional epidemi-
ological approaches base their solutions on using differential
equations that divide the population into subgroups based
on socio-economic and demographic characteristics. Although
these models fail to capture the complexity and individuality
of human behavior, they have been extremely successful in
guiding and designing public health policies. The recent adop-
tion of agent-based modeling (ABM) approaches to simulate
pandemics has allowed to capture individual human behavior
and its inherent fuzziness by representing every person as
a software agent. The ABM model characterizes each agent
with a variety of variables that are considered relevant to
model virus spreading such as mobility patterns, social net-
work characteristics, socio-economic status, health status, etc.
Hence, ABM approaches need realistic data to create agents
that effectively capture human behavior. Typically this data is
obtained from the census or by means of surveys [1].

The adoption of ubiquitous computing technologies by very
large portions of the population (e.g. GPS devices, ubiquitous
cellular networks or geolocated services) has enabled captur-
ing large scale human behavioral data. These datasets contain

1Work done while author was an intern at Telefónica Research, Madrid.

information that is critical to accurately model the spread of a
virus, such as human mobility patterns or the social network
characteristics of each individual [2][1].

In this paper, we propose an ABM system designed to
simulate virus spreading using agents that are characterized
by their individual mobility patterns and social networks as
extracted from cell phone records. We carry out simulations
with data collected during the 2009 Mexican H1N1 outbreak
and measure the impact that government calls had on the
mobility of individuals and the subsequent effect on the spread
of the H1N1 virus. To the best of our knowledge, this is the
first time that this kind of real-life information is used in an
ABM system.

The remainder of this paper is organized as follows: Section
II discusses the related work regarding traditional disease
models and ABM simulation environments; Section III de-
scribes the infrastructure of a cell phone network and how cell
phone records are captured; our proposed ABM architecture
is presented in Section IV. Section V presents a case study
that evaluates the impact that government mandates regarding
mobility restrictions had on the spreading of the 2009 H1N1
virus outbreak in Mexico. Finally, we describe our conclusions
and outline our future work in Section VI.

II. RELATED WORK

A. Traditional Epidemic Disease Models

Traditional epidemic disease models are based on the SIR
model and its variations (SI, SIR, SIS, SEIR, etc.) [3]. These
approaches, called compartmental models, split the population
into compartments that represent the different stages of a
disease. The most general approach is the SIR model that
typifies the disease progression as follows: (1) S, represents
the susceptible (S) portion of the population i.e. those yet to
be infected; (2) I, represents those that are currently infective
or infectious (I); and (3) R, represents individuals that have
recovered (R) from the disease and no longer take an active
part in the disease spread. Other models like the SEIR, add an
intermediate stage (E) which represents a latent state in which
individuals have been exposed to the disease but are not yet
infective, i.e. the individuals in this stage have the virus but
can not infect others. All these models represent the virus
transmission by a set of nonlinear ordinary differential equa-
tions (ODEs) that associate a transition rate to the mobility of
agents between compartments. These transition rates are used



by the models to define a reproductive rate R0 that represents
the number of people in a susceptible population that could
be infected by an infective agent. In general, if R0 > 1 the
disease spreads epidemically and when R0 ≤ 1 the disease
dies out.

One of the main restrictions of the original compartmental
models is that they assume that all members within one
compartment are identical to each other. Recent literature has
evolved the SIR/SEIR models to overcome such homogeneity
by creating metapopulation models. Metapopulation models
extend the traditional epidemiological approaches to differen-
tiate types of population within each epidemic state (S,E,I,R).
For example, Balcan et al. differentiate subgroups within
the population based on vaccinations received, symptomatic
versus asymptomatic individuals, citizens that travel versus
those who do not, natural immunity to diseases, etc. [4].
Similarly, Brockmann et al. define different metapopulations
based on their mobility patterns inferred from the movements
of US bank notes[5].

B. Agent-based Epidemic Models

Compartmental models cannot capture the complexity of
human behavior, particularly regarding mobility patterns and
social networks. Although metapopulation models attempt to
overcome such limitations they still suffer from behavioral
generalizations within the metapopulations. In this context,
agent-based epidemic models (ABMs) are designed to capture
the behavior of each unique individual (agent). As a result,
agent-based epidemiological simulations are more powerful
than metapopulation models to represent the spreading of
viruses given their granularity and capability to model behav-
ior and interactions individually [6].

Although this research line is quite novel, the literature
already reports some relevant results. Apolloni et al. propose
Simdemics, an integrated modeling environment that aids
public health officials in pandemic planning [7]. Simdemics
is an agent-based simulator that defines four models to evolve
the epidemic spread: (1) a statistical model of the population
(based on age, gender or geographical density), (2) a social
interaction model, (3) a disease model, that accounts for the
impact that demographic or socio-economic factors might
have on epidemic spreading, and (4) intervention models e.g.,
public policy changes, agent behavioral changes, etc. In their
conclusions, the authors advocate for the necessity to have
accurate human behavioral models that reveal mobility and
interaction patterns.

Barrett et al. present an agent-based simulator called
EpiSimdemics [8]. The authors build a synthetic population
from the United States Census characterizing each individual
(agent) with 163 different variables. Individuals are mapped to
geographically located housing units, and their daily activities
are modeled from a wide arrange of datasets like education
statistics to model school attendance or transport surveys to
model mobility patterns. The disease model consists of two
parts: the between-hosts disease transmission and the within-
host disease progression. The within-hosts progression is mod-

eled as a finite state machine with probabilistic transitions
(PTTS) that determines the evolution through the various
disease states. The between-hosts transmission is modeled as
follows:

pi = 1− exp(τ
∑
r∈R

Nr ln(1− rsiρ)) (1)

where pi is the probability that an infection is triggered in a
susceptible agent i; τ is the duration of exposure; R is the set
of infective agents and Nr the number of such agents with
infectivity r; si is the susceptibility of individual i and ρ the
basic transmissibility of the disease. This equation represents
an intuitive process: the probability of inter-agent transmission
increases with the amount of time spent in the presence of an
infective individual and the number of infectious agents (and
their infectivity) present at a given location. This approach is
specially relevant when the transmission is mainly by direct
contact, which is the case of H1N1.

ABM simulations, specially if done for large populations,
require large amounts of memory and time. Recent literature
has also explored how to effectively compute ABM models.
Parker et al. present the Global-Scale Agent Model, GSAM,
which focuses on achieving high performance while com-
puting realistic agents [9]. The GSAM system can generate
over a billion distinct agents with models that include daily
interactions. Additionally, the authors show how to use GSAM
system to model epidemic evolutions at a planetary scale.

In general, although agent-based epidemic models improve
traditional epidemiological approaches, all the solutions imple-
mented so far face the same limitation: the information used
to model human mobility and social networks is extracted
from census data and surveys. Although these data might
approximate real behavior, it does not account for changes
in behavior due to the epidemic itself. The model proposed in
this paper aims to achieve a more realistic representation of
human behavior which includes the behavioral changes that
might take place during the epidemic.

III. PRELIMINARIES

In order to capture realistic human mobility patterns and
social dynamics, we use the ubiquitous infrastructure provided
by a cell phone network. Cell phone networks are built using
a set of cell towers, called Base Transceiver Stations (BTS),
that connect the cell phones to the network. Each BTS has a
latitude and a longitude – its geolocation – and gives cellular
coverage to an area called a sector. We assume that the sector
of each BTS is a 2-dimensional non-overlapping polygon,
and we use a Voronoi tessellation to define its coverage area.
Figure 1(left) shows a set of BTSs with the original coverage
area of each cell, and Figure 1(right) presents its approximated
coverage computed using Voronoi.

Call Detail Record (CDR) databases are generated when a
mobile phone connected to the network makes or receives a
phone call or uses a service (e.g., SMS, MMS, etc.). In the
process, and for invoice purposes, the information regarding
the time and the BTS tower where the user was located when



Fig. 1. (Left) Example of a set of BTSs and their coverage and (Right)
Approximated coverage obtained applying Voronoi tesselation.

the call was initiated is logged, which gives an indication of
the geographical position of a user at a given moment in
time. Note that no information about the exact position of
a user in a cell is known. From all the data contained in a
CDR, our study only uses the encrypted originating number,
the encrypted destination number, the time and date of the
call, the duration of the call, and the BTS towers used by the
originating and destination cell phone numbers.

We use CDR data to compute the individual mobility and
social models that are part of the proposed ABM architecture
to model virus spreading. Specifically, we build: (1) a mobility
user model that estimates the position of each agent at each
moment in time and (2) a social user model that identifies
each agent’s social network (in the sense of close relations).
Due to the nature of the CDR data available, each agent’s
mobility model is computed at the BTS level i.e., the ABM
system will be able to determine, at each moment in time, the
BTS coverage area where an agent is located. The position of
the agent within the coverage area of the BTS is unknown.
As a result of that limitation, the ABM system will provide
more accurate mobility models in areas with high densities
of towers (urban areas) where coverage areas per BTS are
smaller in size. Each individual’s social network is modeled
as the set of close relations obtained from the CDRs. Specifics
about its computation are explained in Section IV. Note that
this model is critical to determine when the transmission of
the virus takes place. We assume that two agents that are part
of the same social network are more likely to be physically
close than two agents that do not know each other. Hence,
whenever two agents are in the same coverage area (BTS),
the probability of infection between the two will be higher if
they are part of the same social network.

This approach of capturing and modeling agent behavior
from CDRs sets our work apart from others because: (1)
we model agents from real individual data and not from
census or surveys as previously explained; and (2) we capture
behavioral adaptations to the spread of the disease i.e., changes
in mobility patterns or in the social network of the agents as
the disease spreads over time. In fact, census or survey data
give a one snapshot view of a society’s behavioral patterns.
However, cell phone data is collected in real time and provides
an accurate daily representation of the agents’ behaviors and
their changes due to external events. Finally, note that although
the ABM system we present is designed for cell phone records,
a similar approach could be used with logs from any other
location-based service, such as e.g. geolocalized Twitter.

IV. ABM OF VIRUS SPREADING USING CDRS

We propose an ABM architecture with two main com-
ponents: (1) a set of agents that are modeled using the
information contained in call detail records; and (2) a discrete
event simulator (DES) that simulates the virus propagation
over time based on the agents’ models.

A. Agent Generation

We define the behavior of each agent with three models:
(1) a mobility model extracted from CDR data; (2) a social
network model computed from CDR data; and (3) a disease
model that characterizes the progression of the disease through
its various states in each agent.

1) Mobility Model: The mobility model provides the po-
sition (at the BTS level) where the agent is at each moment
in time. This model is used by the event simulation process
to predict the location of each agent at each simulation step.
The temporal granularity of the mobility model determines the
granularity of the simulation steps e.g., if the mobility model
computes hourly distributions of locations, the simulation step
will be one hour.

We propose a mobility model that divides each day into a
set S of i non-overlapping equal-length time slots. Formally,
the mobility model of agent n, Mn, is defined as:

Mn = {Mwday
n ,Mwend

n } =
{{Mwday,0

n , ..,Mwday,i
n }, {Mwend,0

n , ..,Mwend,i
n }} ∀i ∈ S

Mwday,i
n = {pwday,i,0n , . . . , pwday,i,jn } ∀j ∈ B

Mwend,i
n = {pwend,i,0n , . . . , pwend,i,jn } ∀j ∈ B

(2)
where B is the number of BTS towers that give coverage
to a geographic area; and pwday,i,jn and pwend,i,jn denote the
probability that agent n may be found at BTS j in timeslot
i during a weekday or weekend, respectively. Given a CDR
dataset, the mobility model is built by associating with each
time slot i the set of BTSs where each person has been
observed during weekdays or weekends during the period of
time under study. Note that each individual might be assigned
to more than one BTS in a specific time slot i. In this case,
the event simulator assigns the position of the tower with the
highest probability, i.e., the BTS that the individual has used
the most over the training period. Since people tend to show
monotonic behaviors, an average person typically has very few
BTS towers in his/her mobility model. In the cases where a
time slot contains no data, which typically happens for time
slots at night, we assume that the person did not move from
the latest predicted location in time.

As shown by Song et al. in [10], mobility models computed
from CDRs can accurately predict the real locations of users
with 93% accuracy. However, two pre-requisites need to be
fulfilled in order to achieve this level of accuracy: (1) individ-
uals need to visit more than two locations (BTSs) during the
training set; and (2) they need an average call frequency of
≥ 0.5 calls per hour. Additionally, research by Candia et al.
[11] indicates that there exist relevant behavioral differences



between weekend and weekday behaviors and advocate for
mobility models that can capture such differences. We will
explain details about the computation of our mobility models
that satisfy these requirements in Section V.

2) Social Network Model: The social network of an individ-
ual plays a key role in virus spreading because it identifies the
set of individuals with whom a person has a close relationship.
This is specially relevant for viruses that are transmitted by
direct physical contact, like H1N1. We compute the social
network of an agent as the set of individuals with whom there
was at least one reciprocal contact during the time period under
study. By contact, we mean any type of communication: call,
SMS or MMS, and does not need to be the same type to
imply bidirectionality. Note that an agent can be a member of
more than one social network. Additionally, given that humans
show clear different behavioral patterns between weekday and
weekend, we compute two social networks per agent. Formally
speaking, the social network Sn of agent n is computed as:

Sn = {Swdayn , Swendn } =
Swdayn = {list of reciprocal contacts in wdays}
Swendn = {list of reciprocal contacts in wends}

where Swdayn is the social network during the weekdays and
Swendsn the social network during the weekends. Given the
social networks of an agent, we assume that the probability
of being physically close to another agent will be higher
if that other agent is part of its social network. To model
physical proximity within a BTS coverage area we define
two probabilities: (1) p1 is the probability that two agents
that are in the same BTS at the same time of the simulation
and are part of the same social network are physically close
enough for the virus to be possibly transmitted; and (2) p2 the
probability that two agents that are in the same BTS and are
not in the same social network at the same moment in time
are physically close for the virus to be possibly transmitted.
It is expected for p1 to be larger than p2 given the social
connection. These two probabilities are a novel contribution
of our work since previous ABM approaches did not have
access to real behavioral data. It is important to clarify that p1
and p2 define the probability of two agents being physically
close when they are in the same BTS at the same moment in
time. The probability for the infection to occur between those
agents will be defined by the disease model (explained below).

3) Disease Model: The disease model captures the pro-
gression of the disease in each agent. This model, together
with the mobility and social models, is used by the discrete
event simulator to reproduce the evolution of the disease at a
global scale. We follow a similar approach to that of Barret
et al. [8] and define a disease model that is composed of two
parts: the between hosts transmission model and the within
host progression model.

In Figure 2 we observe that the between hosts transmission
model happens at a probability pi, given by Eq. 1, and
represents the probability that an agent goes from Susceptible
to Exposed. In our model, we assume that all agents have

the same initial susceptibility and infectivity i.e., ri = 1 and
si = 1∀i.

The within host model represents the evolution from Ex-
posed to Infective in a given period of time ε, and from
Infected to Removed in period of time β.

Once an agent reaches the Removed state, it is considered
to be protected from the virus and thus is removed from the
simulation. The specific values of ε and β in Eq. 1 depend on
the disease being modeled and are determined experimentally
from epidemiological studies. Details about their computation
are given in Section V.

Fig. 2. Disease Model composed of Between hosts and Within hosts models.

B. Discrete Event Simulator

The Discrete Event Simulator (DES) simulates the evolution
of the epidemic spreading for a set of agents over a specific pe-
riod of time. To bootstrap the epidemic spreading, we assume
that an initial agent is Infected and starts the transmission.
The DES has a global clock and evaluates, at each simulation
step, the state of all the agents in terms of mobility, social
network and disease model. The size of the simulation step is
determined by the temporal granularity of the mobility model
(see next section for computation details). Specifically, the
DES does the following consecutive tasks: (1) It identifies the
geographical area (BTS) where each agent is located using the
mobility model; (2) it identifies the geographical areas where
there is, at least, one Infective agent; (3) for each Infective
agent, it takes all the Susceptible agents of his social network
that are located in the same geographical area (BTS coverage)
and applies probability p1 that they will be physically close
for the virus to be transmitted; (4) for each Infective agent and
the rest of Susceptible agents included in its geographical area
(not part of its social network), it applies the probability p2 that
they will be physically close for the virus to be transmitted; (5)
for the set of agents physically close obtained from steps (3)
and (4), it applies the between hosts transmission probability
to go from Susceptible to Exposed; (6) for the agents that
are already in the Exposed or Infective state of the disease
model, it applies the corresponding progression; and at last
(7) it removes from the simulation all agents that have reached
the Removed state.

These steps are repeated for each simulation step during the
overall simulation time.

V. EXPERIMENTS: THE CASE OF H1N1 IN MEXICO

In case of a pandemic, the World Health Organization
(WHO) recommends authoritative bodies to consider the sus-



pension of activities in educational, government and business
units as a measure to reduce the transmission of the disease.
The actions implemented by the Mexican government to
control the H1N1 flu outbreak of April 2009 constitute an
illustrative example. The actions consisted of alerts and/or
mandates aimed at reducing mobility, and where issued in
three stages: (a) a medical alert issued on Thursday, April 16th,
which was triggered by the diagnosis of the first H1N1 flu
cases; followed by (b) the closing of schools and universities,
enacted from Monday April 27th through Thursday, April
30th; and (c) the suspension of all non essential activities,
implemented from Friday, May 1st to Tuesday, May 5th.

The Mexican H1N1 outbreak has been investigated in a
number of recent papers using analytical SIR models [12],
agent-based approaches [13], [14] or metamodels [15]. From
a public health perspective, there are studies that focus on clin-
ical features, incubation times and transmission channels [16];
or on measuring the impact of interventions such as anti-viral
drugs [4], [17] or vaccination campaigns [15]. However, re-
search into the impact that the Mexican government mandates
had on the spread of the H1N1 virus and on the mobility
of the population is limited [12]. This is mainly due to the
lack of large scale data about social and mobility behavioral
patterns. We overcome these limitations by computing social
and mobility models using Call Detail Records collected from
a Mexican urban area during the H1N1 flu outbreak. We use
these models in the ABM system previously presented and
measure the impact that the actions taken by the Mexican
government had on human mobility and subsequently on the
spread of the virus. Note that we assume that changes in hu-
man behavior are exclusively caused by government mandates.
Although it is probably the main cause, there might be other
reasons – such as fear induced by the media– that could also
have influenced behavioral changes and that are not considered
in our simulations. Next, we describe the experimental setting,
the generation of the agents and our results.

Period Date Range Description
preflu 1/1 – 16/4 Period before any H1N1 case has been

discovered. Agents will move largely
unaffected and showing their usual mo-
bility patterns.

alert 17/4 – 26/4 April 16th - Diagnosis of H1N1 cases
and medical alert triggered the follow-
ing day. People may be reacting to the
news and modify their usual mobility
patterns.

closed 27/4 – 31/4 Schools and Universities closed. Nor-
mal behavior disrupted as people
change their usual mobility patterns.

shutdown 1/5 – 5/5 Closure of all non-essential activities.
reopened 6/5 – 31/5 Restrictions lifted.

TABLE I
TIME PERIODS OF STUDY.

A. Experimental Setting

In order to examine the impact of government restrictions
we evaluate changes in the mobility and disease models in
five chronological periods. Table I presents the timeline under
study. It covers from January 1st, 2009 to May 31st, 2009.
Each period is related to specific events that took place
during the outbreak i.e., preflu, alert, closed, shutdown and
reopening. We generate agents (with corresponding mobility
and social models) for each of these time periods. In order
to measure behavioral changes, we define two scenarios: a
baseline scenario and an intervention scenario.

The baseline scenario is built using the mobility and social
models obtained during the pre-flu period, when individuals
show normal – not affected by medical alerts – mobility
behavior. The intervention scenario considers the models that
are built with data from the alert, closed, shutdown and
reopened periods. In this case, depending on the moment of
the simulation, the DES will jump from one set of models
to the next. The evaluation is done by comparing the results
obtained by both scenarios. Due to the inherent randomness
of the spreading process we run each scenario 10 times and
average the results.

B. Generation of Agents

To generate realistic agent mobility and social network
models, we collected CDRs from January 1st to May 31st

of 2009 of one of the most affected Mexican cities. The
entire dataset contains around 1 billion CDRs and around 2.4
million unique cell phone numbers. Each cell phone number is
associated with one agent and we compute the mobility, social
and disease models for both the baseline and the intervention
scenarios.

The mobility models are computed using Eq. 2 with a
granularity of one hour. As described in Section IV, we need
to fulfill a set of requirements to guarantee that the mobility
models computed from CDRs are realistic representations of a
human’s motion. Following the research carried out by Song et
al. [10], we filter the individuals such that only those that (1)
are assigned to at least two BTSs throughout the time periods;
(2) have a minimum average calling rate of 0.25 calls/hour;
and (3) have at least 20% of the hourly time slots filled,
are considered. Finally, since we want to measure behavioral
changes during the outbreak, we only take into account agents
that are active during the five time periods under study.

These requirements narrow down the final number of agents
to 25, 000.

We also build the social network models for the baseline and
the intervention scenarios. As part of these models, we needed
to define values for the contact probabilities p1 and p2. In order
to compute their values, we make use of the work by Cruz-
Pacheco et al. [12], where the authors examined the effect of
the government intervention measures on the epidemic spread
using SIR. We use their simulation to determine the optimal
values of p1 and p2 as follows: we implement an exhaustive
search in the range [0 − 1] over all combinations of p1 and
p2, using .1 increments. For each pair of values tested, we



run the simulation and obtain a curve representing the number
of infected agents. We select as final p1 and p2 values the
ones that minimize the mean squared error between our curve
and the one presented in Cruz-Pacheco et al. Our search
determined that the best values were p1 = 0.9 and p2 = 0.1,
i.e., the probability that two agents that are in the same BTS
and in the same social network are physically close for the
infection to be transmitted is 0.9, and 0.1 if the agents are not
in the same social network.

To build each agent’s disease model, we use the parameters
reported in the literature related to the H1N1 outbreak (see
Table II). These parameters are common to both scenarios.
Balcan et al. [4] used maximum likelihood analysis of epi-
demic simulations to derive values of R0 = 1.75, an infectious
period of 60 hours β = 60−1 and a latent state (Exposed) of
1.1 days (ε = 26.4 hours). Finally, we compute the value of
ρ using R0 as explained in [13]: R0 = ρ

β ; which gives a final
value of ρ = 34−1.

Parameter Value Description
R0 1.75 Estimated Reproduction number.
ε 26.4−1 hours Expected duration latent period.
β 60−1 hours Expected duration infectious period.
ρ 34−1 hours Expected time before infecting another

agent.

TABLE II
PARAMETERS OF THE DISEASE MODEL.

Once all the agent models have been computed for both
scenarios, we are ready to run both simulations. We initialize
our simulations with one infected agent on April 17th (the first
day a case was detected) [12] and run the simulation for 30
days. The initial agent infected was chosen to have a median
connectivity (size of its social network), and located in one of
the coverage areas that gives service to the airport to simulate
a spread started by an agent that had just arrived to the city
by air.

C. Analysis of the Results

In this Section, we compare the results of the intervention
scenario with the baseline scenario from three different view-
points: (1) a mobility perspective, by comparing changes in
mobility; (2) a disease model perspective, by comparing the
number of susceptible and infected agents; and (3) a spatio-
temporal perspective, by comparing the geographical evolution
of the disease spread.

1) Agent Mobility: In order to measure the changes in
mobility due to government mandates, we computed for each
scenario the percentage of agents that moved from one BTS
coverage area to another one at each step of the simulation (1
step = 1 hour). Figure 3 shows the results.

The baseline plot shows a cyclical day/night behavior
throughout the simulation period. In general, it can be ob-
served that at mid-day, more than 60% of the agents change
BTS; whereas that number decreases to less than 20% during
night hours. We also observe a cyclical behavioral change

during the weekends, where the mobility is reduced when com-
pared to weekdays. The intervention scenario shows similar
cyclical changes. However, there are a number of important
differences when compared to the baseline. There is a signif-
icant decrease in mobility on April 27th, precisely when the
alert period finishes and the close period starts. This decrease
in mobility continues until the beginning of the shutdown
period. On May 1st and throughout the shutdown period, there
is an even larger decrease in mobility (< 30%) that lasts until
all restrictions are lifted on May 6th. Although the behavioral
change during the shutdown period is mainly caused by the
total closure implemented by the government, it is important
to note the following facts: (1) The shutdown period includes
a weekend, which as observed in the baseline, always implies
reduced mobility; and (2) May 1st and May 5th were national
holidays in Mexico (Labor Day and Cinco de Mayo), which
from a mobility perspective should show a behavior similar
to the weekends baseline. To sum up, we can conclude that
during the intervention scenario there is a reduction in the
mobility of the agents of 10% during the alert period and of
up to 30% during the closing and shutdown periods, when
compared to the baseline. These differences in the agents’
mobility disappear once the reopen period starts (from May
6th onwards).

Fig. 3. Percentage of agents that move between BTSs for the intervention
and baseline scenarios. The temporal granularity is 1 hour.

2) Disease Transmission: In this section we study the evo-
lution of the disease focusing on the number of susceptible and
infected agents in the intervention and baseline simulations.
Figure 4 displays the percentage of the population that is in
the susceptible stage of the disease model for a specific date
and time. Results are shown for both the intervention and the
baseline scenarios.

In both cases, we observe that at the beginning of the
simulation (April 17th) all agents are susceptible of being
infected (except for the initial infected agent that starts the
simulation). As time passes, the evolution of susceptible agents
is described by a sigmoid function. The number of susceptible
agents decreases faster in the baseline scenario, i.e. the number
of infected agents grows faster than in the intervention sce-
nario. This result supports the hypothesis that the government
measures taken during the intervention scenario had an impact



on the agents’ mobility patterns and hence managed to reduce
the number of infected agents (which implies a larger number
of susceptible agents) when compared to the baseline scenario.
The largest difference between both sigmoid functions takes
place during the peak of the epidemic, with approximately a
10% less of susceptible agents in the intervention scenario.
By the end of the outbreak, the number of susceptible agents
is lower in the baseline than in the intervention scenario (i.e.,
more agents were infected in the baseline scenario).

Figure 5 shows the percentage of infected agents during
the simulation for both scenarios. We observe that the peak
of the epidemic in the intervention scenario happens later in
time than in the baseline, and has a smaller absolute value.
Delaying the peak of epidemics is a priority in intervention
strategies, as the time gained can be used to implement actions
such as vaccination campaigns, which have to be delivered
before the peak in order to be effective. The reduction in
mobility and the closure of public buildings delayed the peak
of the epidemic by 40 hours.

Another important objective in intervention strategies fo-
cuses on limiting the incidence of a disease (measured in %
of infected agents) at its peak. In our simulations, the total
number of infected agents was reduced by 10% in the peak
of the epidemic in the intervention scenario when compared
to the baseline scenario. These results are in agreement with
the ones reported in [12]. In this case, the authors, using tra-
ditional disease model techniques (SIR), reported a reduction
in prevalence as a result of the government restrictive actions
of 6%− 10%.

Fig. 4. Fraction of susceptible agents in the population over time. These
curves are an average of all simulation runs.

3) Spatio-Temporal Evolution: The combination of the mo-
bility and disease models provides us with a spatio-temporal
representation of the spread of the virus. In fact, we can
analyze the spread not only at a global scale – as done in
the previous section – but at a BTS level. Such analysis
gives an understanding of the geographical and chronological
transmission of the spread throughout the city.

Figure 6(a) displays the main parts of the city under study
and some of its landmarks, namely the subway system which
consists of two lines: L1, runs East-West and L2, which runs
North-South (L2) with one central station in common, C. The

Fig. 5. Fraction of infected agents over time. These curves are an average
of all simulation runs.

downtown area is geographically located around C, E1, E2,
E3 and E4, where there are university buildings, government
offices and commercial areas. Figure 6(b) shows the BTS
coverage areas of the cell towers in the city, computed using
a Voronoi tessellation.

The spatio-temporal analysis allows to study the spread
of the virus in this lattice. Figure 6(c) depicts the number
of infected agents per BTS at 12am on May 2nd (at the
peak of the spreading) in the baseline scenario. Note that
the downtown area contains the largest number of infected
agents, although residential areas located to the west of the city
are also heavily infected, specially when compared to other
residential areas. The intervention scenario shows a similar ge-
ographical distribution of heavily infected BTS areas, although
the number of infected agents is smaller than in the baseline
scenario. Analogously, the temporal evolution of the trans-
mission follows a similar trend both in the intervention and
baseline scenarios: the spread starts in the airport area (where
the first infected agent was) and rapidly evolves towards the
city’s downtown area, where it peaks, until it dies out as agents
turn into the Removed stage. This preliminary spatio-temporal
analysis seems to indicate that although behavioral changes
due to government restrictions manage to reduce and contain
the epidemic, they do not seem to affect its spatio-temporal
evolution.

VI. CONCLUSIONS AND FUTURE WORK

The ability to model and predict the evolution of a virus
spreading is a critical issue for governments and health or-
ganizations. Although previously proposed ABM systems are
able to capture the inherent individuality and randomness
of the process, they have not modeled the spatio-temporal
dynamics of human behavior and its potential changes due
to the alarm situation. This limitation is mainly due to the
fact that the agents’ behavior is typically built from census
or survey data. In this paper, we have introduced an ABM
system whose agents’ mobility and social network models
are built from human behavioral data available in call detail
records. As a result, the agents’ behavior not only mimics a
population’s mobility and social patterns, but also the changes
of these patterns over time. These changes are critical to



(a)

(b)

(c)

Fig. 6. (a) Map of the city under study with the subway system and reference
landmarks; (b) Division of the city into the BTS coverage areas using a
Voronoi tessellation; and (c) Number of infected agents (represented by the
height and color of the bars in each coverage area) in the baseline scenario
at 12am on May 2nd.

achieve realistic spread simulations that allow us to measure
the real impact of the spread.

We have applied the proposed ABM system to CDR data
captured during the H1N1 outbreak of Mexico in 2009. In
our experiments, we have found that the spread of the virus
was both reduced (by about 10%) and postponed (by about
40 hours) thanks to the government mandates. Our analysis,

which focuses on the agents’ mobility and social networks,
provides a novel approach to ABM simulations based on real
behavior.

Future work will focus on enriching the agents’ characteri-
zation by adding variables such as socio-economic factors and
health status that will create even more realistic simulation
environments. We also plan to work on formal methods
to measure changes in the spread from a spatio-temporal
perspective so as to enhance the preliminary results presented
in this paper. Finally, we plan to analyze the impact that the
location, mobility and social connectedness of the first infected
agent has on the spread of the disease.
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