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ABSTRACT
One of the important Internet challenges in coming years will be
the introduction of intelligent services and a more personalized
environment for users. Analysis of  Web server logs has been used
in recent years to model the behavior of web users in order to
provide intelligent services. In this paper we propose a model for
predicting sequences of user accesses which is distinguished by
two elements: sequentiality and personalization.
The concept of sequentiality in our model possesses three
characteristics: (1) preservation of the sequence of the click
stream in the antecedent, (2) preservation of the sequence of the
click stream in the consequent and (3) a measure of the time gap
between the antecedent and the consequent using the number of
user clicks.  In order to improve its prediction ratio, the model
includes a personalization scheme in which each frequent user of
a web site has a personal prediction system.
The model has been defined as a black box that can be used as
part of any intelligent service. As an example, we present a cache
prefetching system based on the prediction model. The hit ratio of
the cache is highly satisfactory.

Keywords: Web Usage Mining, Association Rules,
Sequential and Temporal Models, Prefetching, Sequence
Prediction.

1. INTRODUCTION
Since Etzioni [12] first proposed the term “Web Mining” a lot of
research has been done in this area. One of the topics that has
received a lot of attention is modeling web users’s behavior, in
other words, being able to predict the requests of that user.
Having a model of user behavior has allowed the implementation
of a great variety of intelligent services. Some examples of these
services include redesigning of web sites [24], personalization for
e-commerce sites [27], recommendation of pages [18],
construction of web pages in real-time [23], adaptation of web
pages for wireless devices [4], improvement of web search
engines, and prefetching [11][19][30][31].
The main techniques traditionally used for modeling user’s
patterns  are  clustering and association rules. These two
approaches produce systems which lack two important
characteristics of Web user access: sequentiality and temporality.
In this context sequentiality implies reflecting the order of the
requests of the user, and temporality refers to being able to
capture when the predicted actions are actually going to happen.
In this paper we present a model that constructs sequential
association rules to capture the sequentiality and temporality in
which web pages are visited.

In order to do this, the rules constructed by the model preserve the
sequence of the click stream of the antecedent and the sequence of
the click stream of the consequent. There is a third significant
element in our model: the rules also reflect the distance between
the antecedent and the consequent measured by the number of
user clicks to go from one to another.
The concept of distance between the antecedent and the
consequent is very important for the prediction system because it
allows the rules to express not only what pages are going to be
accessed but also when precisely they are going to be accessed.
This is especially useful for prefetching applications or for
recommendation systems. Additionally, the concept of distance
can be used as a measure of the quality of the rule. For example if
we want to redesign Web pages for wireless devices by finding
shortcuts, the distance of a rule can be used to measure how useful
is that shortcut.
Our results show that this approach yields good prediction
accuracy when working with sites that have a simple architecture.
However when working with sites with complex architectures the
results are not as good. This occurs because access order is not a
global property shared across all users. In these cases, in order to
improve the accuracy of the sequential prediction system, we
introduce a personalized prediction system for the set of frequent
users of the site. It is arguable that this will require a lot of space.
However, as we will see, the increment per user compared to the
information that sites already have about each user is not
significant and is even less significant if we consider that user
satisfaction is the most important criteria for an e-commerce site.
The proposed model can be used as a black box for any of the
applications previously mentioned. To illustrate such use, the
paper presents a cache prefetching application of the Sequential
Behavior Model. This example is presented from a new point of
view: we are especially interested in studying how the accuracy of
prediction affects the final hit ratio. Our study separates out the
above from other effects.
The organization of the paper is as follows. Section 2 summarizes
the motivation and prior work done in this area. Section 3
presents the Sequential Behavior Model. Section 4 implements
some examples of the Sequential Behavior Model and analyzes
the results. Section 5 presents the Personalized Sequential
Behavior Model and analyzes the results. Section 6 presents an
example of the model: a prefetching system. Finally, in Section 7
we conclude the article with the conclusions and a discussion of
future work.



2. MOTIVATION AND RELATED WORK
The main techniques used for pattern discovery are clustering and
association rules [25].
Clustering, applied in the context of web mining, is a technique
that makes it possible to group similar browsing patterns or to
divide the web pages of a site into groups that are accessed
together. This information can be used in the recommendation
process of a page [18] or by search engines to display related
pages along with their results. Also, in this context, clustering has
a distinguishable characteristic: it is done with non-numerical
data. This implies that, usually, the clustering techniques applied
are relational. This means that we have numerical values
representing the degrees to which two objects of the data set are
related. Some examples of relational clustering applied to web
mining are [18][14]. Some authors have also considered the
inherent fuzziness of the data presented in the web mining
problem and have developed relational fuzzy clustering
algorithms [15].
Association rule discovery aims at discovering all frequent
patterns among transactions. The problem was originally
introduced by Agrawal et al. [1] and is based on detecting
frequent itemsets in a market basket. In the context of web usage
mining, association rules refer to sets of pages that are accessed
together. Usually these rules should have a minimum support and
confidence to be valid. The Apriori algorithm [1] is widely
accepted to solve this problem. Association rules can be used to
re-structure a web site [24], to find shortcuts, an application
especially useful for wireless devices [4], or to prefetch web pages
to the local cache of a user to reduce the final latency [11].
The data used to obtain frequent patterns in a Web mining
problem has a very important characteristic: it is sequential. The
user accesses a set of pages in a given order and it is very
important to capture this order in the final model obtained.
Unfortunately, the two previous methods lack any kind of
representation of this order.  Clustering identifies groups of pages
that are accessed together without storing any information about
the sequence. Association rules indicate groups that are presented
together.
Some authors have already dealt with the problem of capturing
sequentiality in  association rules for web mining. The approach
taken in [9] considers sequences of each session to produce rules.
[21] presents the PPM algorithm, which also preserves the order
of access and basically uses a Markov prediction model. The main
limitation of most of these approaches is that those algorithms
only detect patterns that correspond to consecutive sequences.
In this paper we present a model that is able to detect patterns
produced by non consecutive sequences and to preserve the order
in which those web pages are visited. The model expresses those
patterns using rules.
This ability of detecting patterns constructed with non consecutive
sequences introduces the possibility of measuring the distance
between the antecedent and the consequent of a rule. Some
algorithms, like [19], are designed to detect non consecutive
sequences, but there is no indication of the distance between
them. In our model the distance between the antecedent and the
consequent is measured in terms of  the number of user clicks to
go from one to the other. To date no model deals with the concept
of distance between the antecedent and the consequent of a rule.

This concept is very important for any application (such as a
recommendation system) that attempts to infer characteristics of a
web site because it provides information about when the pages are
going to be visited. This concept is different from finding
association rules that have explicit temporal information, as done
in [3], or from looking for rules that give temporal relations
between different sessions of the same user, as done in [17]. Our
method gives a temporal relation within the same session between
the antecedent and the consequent by measuring the distance
between them.
The model also presents a local approach to the problem by
introducing a personalized behavioral model for each frequent
user of a web site.

3. SEQUENTIAL BEHAVIOR MODEL
This section presents the development of the proposed model.
First we formalize the preparation of the data. Next the concept of
Sequential Association Rule is introduced and then the definition
of Sequential Behavior Model is given.

3.1 Preparing the Data
The syntax of the log file that contain all requests that a site has
processed is specified in the CERN Common Log Format [7].
Basically an entry consists of (1) the user’s IP address, (2) the
access date and time, (3) the request method (GET, POST ...), (4)
the URL of the page accessed, (5) the protocol (HTTP 1.0, HTTP
1.1,...), (6) the return code and (7) the number of bytes
transmitted.

This set of logs contain enough information to reveal the set of
sessions served by the site. The W3C Web Characterization
Activity (WCA) [29] defines a user session as the click-stream of
page views for a single user across the entire Web. In our context,
the information we really want to obtain is a server session,
defined as the click-stream in a user session for a particular Web
server. A click-stream is defined as a sequential series of page
view requests. Although the W3C defines a user as a single
individual that is accessing one or more servers from a browser, in
our problem we will identify an IP as an user, bearing in mind that
a single IP can be used by a  group users. Our system defines a
compiler that transforms a set of logs L expressed as,

{ }1

, , , , , ,

,...,

( ),

/ 1...

L

i IP TIME METHOD URL PROT CODE BYTESi i i i i i i

L L L

L

i i L

=

=

∀ =

Into a set of sessions S,

{ }1,..., SS S S=

Where |L| is the number of logs of L and |S| is the number of
sessions of S. Each session of the set of sessions is defined by a
tuple (IP,PAGES), where IP identifies the user of the session and
PAGES the set of pages requested,
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Where pi is the number of pages requested by user IPi in session
Si. The set of URLs that form a session satisfy the requirement
that the time elapsed between two consecutive requests is smaller
than a given ∆t. The value we have used is 30 minutes, based on
the results of [6] and [25]. Figure 1 presents the algorithm of the
compiler.
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Each SAR is constructed from an N-Gram obtained from a
session. This means that for the SAR of the definition some
session Sk of S contains an N-Gram, with N=|A|+|C|+n, that
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Figure 1. Algorithm of the compiler implemented

he filters implemented by our algorithm delete  all entry logs that
 not refer to a URL or that indicate an error. Also, sessions of

ngth one or sessions three times as long as the average length of
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at random accesses or search engines would introduce to the
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.2 Sequential Association Rules
he concept of Sequential Association Rule (SAR) is based on the
ncept of an N-Gram. In the context of web mining, an N-Gram
 a session Si is defined as any subset of N consecutive URLs of
at session.
 Sequential Association Rule (SAR), given |A| the length of the
quence of URLs of the antecedent, |C| the length of the
quence of URLs of the consequent, and n the distance between
e antecedent and the consequent, is defined as:
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 SAR  expresses the following relation: if the last click stream of
ngth |A| of a user is A then in n clicks the set of URLs C will be
quested.

Each SAR has a degree of support and confidence associated with
it. The support of a rule is defined as the fraction of strings in the
set of sessions of S where the rule successfully applies.  The
support of a rule is given by:
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Where ?1...?n represents the set of any n pages in the session, and
A?1...?nC ∈ Si is defined as A?1...?nC is an N-Gram of Si. This is
the way to model the distance between the antecedent and the
consequent when obtaining the support. The confidence of a rule
is defined as the fraction of times for which if the antecedent A is
satisfied, the consequent C is also true in n clicks. The confidence
of the rule is defined as:
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SR|A|,n,|C| ,for a given a set of sessions S, is defined as a set of
tuples (SAR,Counter), where each tuple has a SAR with an
antecedent of length |A|, a consequent with length |C| and a
distance n between the antecedent and the consequent. The
Counter of each tuple indicates the number of times that the
correspondent rule occurs in S. Figure 2 shows the algorithm used
to obtain SR|A|,n,|C|.
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 order to preserve only the relevant information, only those
Rs  which have support and confidence bigger than a given

reshold are considered. Withθ’ the threshold of the support and
 the threshold of the confidence, we will talk about the set of
les SR|A|,n,|C|,θ’,σ’ as the rules of SR|A|,n,|C| with a support bigger
at θ’ and a confidence bigger than σ’.
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SR|A|,n,|C|,θ’,σ’ is defined as a set of elements (SAR,θSAR,σSAR), where
SAR is a Sequential Association Rule, and θSAR and σSAR the
support and confidence associated with it, satisfying θSAR>θ’ and
σSAR>σ’. SR|A|,n,|C| contains enough information to obtain θSAR and
σSAR. The set of SARs of SR|A|,n,|C|,θ’,σ’ is a subset of SR|A|,n,|C|.
In order to optimize the storage and access to the rules that define
SR|A|,n,|C|,θ’,σ’, we group the rules with the same antecedent, storing
for each set of rules the consequent and the degree of support and
confidence associated with it. The structure of SR|A|,n,|C|,θ’,σ’ is:
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Where A is a click stream of length |A|, Ai, i=1...k, with |Ai|=|A|,
is the set of antecedents of the rules of SR|A|,n,|C|,θ’,σ’, Ci,j, i=1...k,
j=1...li , with |Ci,j|=|C|, the set of consequents for each antecedent
Ai, and li the number of consequents of each antecedent.
Figure 3 presents an example of the concepts previously
introduced.
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Where the independent variable of Φ is the set of consequents
obtained from RU for a given antecedent (click stream), and the
dependent variable is the consequent or set of consequents
predicted. Some examples of policy functions include:
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The first example predicts the consequent with the biggest
confidence, the second one predicts the one with the biggest
support, and the third one picks the two consequents with the
highest confidence. The policy function can be defined depending
on the specific application and on the characteristics of the web
log used.
The tuple (RU,Φ) defines the on-line execution of the prediction
system. Given A the click stream of the last |A| pages requested by
the user, the set of predicted pages will be given by:

( ( ))RU AΦ
Figure 3. Example of application

3.3 Sequential Behavior Model
A Sequential Behavior Model is defined by a tuple {RU,Φ} where
RU is a set of rules and Φ is the decision policy function. RU can
be defined by any SR|A|,n,|C|,θ’,σ’ or any subset or union of more
than one SR. The function Φ is defined as:

3.4 Sequential Behavior Model as a Markov
Chain
The problem of rule mining has also been presented from a
Markov chain point of view.  A process is a Markov Chain
process with stationary transitions and countable space state [13]
if that process moves through a countable set I of states, and at
each stage, it decides where to go by a random mechanism which
depends only on the current state and not on the previous history
or even on the time.
The rule mining problem can be seen as a stochastic process
which moves through a countable set of states url1, ..., urlp, where
p is the number of pages of that web server. In each state urlt, the
next page visited will depend only on the actual page, and not on
the previous history. Following these ideas, [2] presents a Markov
model based approach for prediction and [4] uses a Markov
model for finding shortcuts. [26] compares N-gram prediction
models for different sizes of N, which are equivalent to
constructing an (N-1) order Markov Model. Each of these
investigations consider only subsequences with consecutive
accesses within transactions and do not present a formal model for
taking into account the time gap between the antecedent and the
consequent.
The Sequential Behavior Model proposed can also be seen from a
Markov model point of view. For example SR1,1,1 is equivalent to
a first-order Markov model. In general a SRn,1,1 is equivalent to an
n-order Markov model, where each state will be identified with
the antecedent of length |A| of each rule. The confidence of each
rule, which by definition will depend only on the |A| elements of
the antecedent, and not on the previous URLs, will be equivalent
to the probability of the transition in the equivalent Markov
model.
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4. EXAMPLES OF SEQUENTIAL
BEHAVIOR MODELS
4.1 Characteristics of the logs used
We have selected three sets of logs in order to cover different
types of servers, ranging from small sites with few users to
complex commercial sites with a large number of users.
The first log is from the Computer Science Department (CS) of
the Polytechnic University of Madrid [10]. The training set is for
September 2001. The test set has been defined using log data for
1st October 2001. This is an example of a small site, with a simple
tree architecture and a small number of visitors.
The second log is from the NASA Kennedy Space Center server
[20]. It contains 3,461,612 requests collected over the months of
July and August 1995. This is an example of a medium site server,
with a complex architecture and a medium number of users. The
training set considered was July 1995, and the test set has been
defined using log data for the 1st of August 1995.
The third site is ClarkNet [8], a commercial Internet site provider,
which contains 3,328,587 requests over a period of two weeks.
This is an example of a large commercial site, with a highly
complex architecture  and a high number of visitors. The training
set has been defined from 28 August 1995 to 9 Sep 1995, and the
test set is the log data for 10th  Sep 1995.
These training sets are the inputs to the algorithms and filters
presented in Section 3.1. Table 1 presents some characteristics of
the training sets including the processing time of the algorithm
presented in Table 1 for each log. Although the filtering process
eliminates a lot of sessions, we keep the relevant part of the
requests. The processing time is given for an implementation in
LISP of the compiler, running with Linux, on a Pentium III
450MHz.

Table 1. Training Log Characteristics.

CS NASA CLARKNET

Size 27M 160M 308.6M

Dates September
2001 July 1995 28 Aug to 9

Sep, 1995

Processing  Time 12 min 4 h 35 min 8 h 50 min

# of sessions before
filtering 3,499 124,666 224,935

# of sessions after
filtering 839 57,875 83,011

# of requests before
filtering

6,244 352,844 511,536

# of requests after
filtering 3,504 215,223 283,844

The characteristics of the test logs defined for each one of the
training sets are given in Table 2. The processing time indicates
the time needed to obtain the set of sessions from the logs using
the algorithm presented in Figure 1. The number of sessions and
number of pages requested shown in Table 2 are post-filtering.

Table 2. Test Log Characteristics.

CS NASA CLARKNET

Size 170K 6.8M 19M

Date Oct. 1st 2001 Aug. 1st 1995 Sep. 10th 1995

# of sessions 53 2753 5725

# of Pages requested 138 9521 18233

Average length of
Session 2.6 3.4 3.9

Processing Time 25 sec. 2 min 40 sec 6 min 10 sec

4.2 Implementation and Result Analysis
For each log we have obtained SR1,1,1. After that a threshold of
1% for the support and of 5% for the confidence has been applied,
obtaining SR1,1,1,1,5. Other values of support and confidence have
been tested but the best prediction rate is obtained with 1% and
5%. The characteristics of these SRs are presented in Table 3. The
processing time indicates the time needed to process each one of
the training sets using the algorithm presented in Figure 2.

Table 3. Characteristics of the SR obtained.

CS NASA CLARKNET

Processing Time 50 sec 3 min 20 sec 7 min 40 sec

# of SAR before applying
thresholds 392 15,644 49,245

# of SAR after  applying
thresholds 94 116 166

Figure 4 presents  the accuracy of the prediction system for CS,
NASA and ClarkNet logs, with SR1,1,1,1,5 and different Φ
functions. The results are obtained comparing the actual next page
of the session with the page or set of pages predicted by the
system. The first set of columns represents the results for the
function Φ defined as:

{ }1 ,1 ,1 ,1 , , , ,

, ,

(( , , ),..., ( , , ))
 / 1... ,

i i ii i i i l i l i l i j

i j i m i

C C C
with m m l m j

θ σ θ σ
σ σ

Φ =
≥ ∀ = ≠ (1)

In other words, only the consequent with the highest confidence is
given as the prediction. The rest of the functions Φ defined for
each set of columns  are, in order:
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i i i ii i i i l i l i l i i lC C C Cθ σ θ σΦ = (4)

Function Φ2 gives as the set of predicted pages the two
consequents with higher confidence, Φ3 the set of three
consequents with higher confidence, and Φ4 all the predictions
that have a support and a confidence bigger than the thresholds
used.



Figure 4. Results of the model for each set of logs.

As can be seen in Figure 4 the percentage of correct predictions
for each system, in the worst case, is 45% for CS, 13% for NASA
and 15% for ClarkNet. The result for CS is satisfactory in the
sense that the prediction system obtained allows us to implement
efficient intelligent services, as can be seen in Section 6.
Nevertheless, the results for NASA and ClarkNet are not
satisfactory. The cause for that difference in the prediction system
is that the sites are actually very different. In CS we have a site
with a well defined tree architecture, a low number of visitors and
a low number of links per page (11 on average).  This allows a
simple system like SR1,1,1,1,5 to capture the behavior of the users of
that site. In other words, the users of CS site have a clear behavior
pattern that can be satisfactorily captured with a Sequential
Behavior Model.
The other two sites have a large number of pages, a higher number
of links per page and a higher number of visitors. More
importantly they have highly interconnected architectures. Based
on these results we speculate that in those sites, user behaviors
cannot be captured properly with a Sequential Behavior Model
because access order is not a global property in complex sites. In
the same sense, we speculate that a Sequential Behavior Model
can efficiently capture the behavior of a site which has clear
patterns, which occurs mainly in sites that have a tree architecture
and a low number of visitors.
The inability of the proposed model to efficiently capture a global
behavior in sites with complex structures and high numbers of
visitors, suggests that a more local approach to the behavior
should be taken. This variation of the model is presented in
Section 5.

4.3 Other Sequential Behavior Models
For the CS and NASA logs we have also obtained other
Sequential Behavior Models and have tested the accuracy of their
predictions.
The SRs collected ranged from SR1,1,1,5 to SRN,1,1,1,5,where N is the
integer part of the average length of the sessions of each log. This
means that for CS we have obtained SR1,1,1,1,5, SR2,1,1,1,5 and for
NASA SR1,1,1,1,5, SR2,1,1,1,5 and SR3,1,1,1,5.
The improvement of the accuracy of the prediction for these
systems, compared to the results of SR1,1,1,1,5 presented in the
previous section is at best 5%. This means that all of the systems
contain basically the same information.

As we noted in Section 3.3 the set of rules of RU can include
more than one SR. We tested the results of a prediction system
with a RU defined as:

,1,1,1,51

N

ii
RU SR

=
= ∪

In other words, RU is the union of all the SRs up to the average
length of the session. Using as the decision policy function Φ1,
the accuracy of this Sequential Behavior Model is only 6% bigger
as compared to SR1,1,1,1,5. This implies that the information
contained overlaps significantly.
Although in this specific case the idea of using more that one SR
has not produced good results, more generally, it offers the option
of creating more complex RUs in order to achieve a higher
prediction accuracy.

5. IMPROVING THE PERFORMANCE OF
THE SBM MODEL: PERSONALIZATION
As we found out in the previous section, the Sequential Behavior
Model  proposed in Section 3 is not capable of capturing the
behavior of complex, highly interconnected sites. A more local
approach is needed.
One method which could improve the model is personalization.
The intuition here is that there is a set of users in each web site
who are responsible for the best part of the load. These users
pollute the behavior model of the rest of the users. We propose to
have a personalized set of rules SR(user) for each frequent user of
a site.
The main criticism that arises from this idea is that much space is
needed to store the set of personalized sequential association rules
of each user. Nevertheless, e-sites already have a lot of
information about each user, ranging from name, address, or
credit cards numbers to layouts and preferences, as can be seen in
[5],[16] and [28].
The inclusion of a personal set of association rules, as will be
shown, will not cause a large increase in needed storage. Of
course not every user that accesses a site will automatically have a
personal set of association rules. A policy for creation and
destruction should be defined: a personal set of rules can be
created for a user if that user accesses the site a minimum number
of times in a given period of time, and can be destroyed if the user
does not maintain a given rate of visits .
This new solution does not necessarily apply to every site. In
order to be applied it should be demonstrated that the greatest part
of the load of the site is produced by a core group of users. Those
will be the users for which the system will define a personal set of
association rules. Table 4 shows the characteristics of our training
logs.

Table 4. Some characteristics of the Training Logs.

NASA CLARKNET

# of Sessions 124,666 224,935

# of Users 37,821 58,035

# of Users with just one visit 30,875 49,085
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As can be seen in Table 4, in the case of the NASA log,  18% of
the users are responsible of 75% of the visits. Similar behavior is
also observed for the ClarkNet log, where 15% of the users are
responsible for 78% of the visits. These sites posses the perfect
characteristics for the implementation of a Personalized
Sequential Behavior Model (PSBM).

5.1 Personalized Sequential Behavior Model
The set of sessions S is going to be clustered using IP. Given |IPD|
the number of different IPs of S that have a ratio of visits in the
training log bigger than or equal to the ratio defined to create a
personal set of rules, and |IPk| the number of sessions of S that
satisfy IP=IPk, S can be expressed as:

{ }
{ }

1

1

,...,

( , ),..., ( , ) ,
 1...

IPD

k k

IP IP

IP k k IP

D

S S S

S IP PAGES IP PAGES
with k IP

=

=
=

The set of sessions that correspond to IPs that do not have enough
visits to be considered for the construction of a PSBM are filtered
out of the log.

In this context we define SR(IP)|A|,n,|C|,θ’,σ’ as the set of sequential
association rules that describe the behavior of user IP, using rules
with a length |A| of the antecedent, length |C| of the consequents,
a distance between the antecedent and the consequent of n, a
minimum support of θ’ and a minimum confidence of σ’.

SR(IP)|A|,n,|C|,θ’,σ’ is obtained applying the algorithm presented in
Figure 2 to each one of the clusters of S, and applying to the rules
obtained the filters for the support and the confidence.

( ) _ ( , , , ), 1,...,
ii IP DSR IP Obtain SR A n C S i IP= ∀ =

The support of the rules of each SR(IPi) is obtained as:

1
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θ
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=

The model allows the construction of different SR(IP)|A|,n,|C|,θ’,σ’
for different IPs. In our study, we will consider that all of the SRs
constructed have the same |A|, n, |C|, θ’, and σ’ values.
Similar to the SBM introduced in Section 3, a Personalized
Sequential Behavior Model is defined by a tuple (RU,Φ), where
RU is defined as:
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θ σ
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The RU of a PSBM is represented as the union of all the personal
SRs plus the global SR|A|,n,|C|,θ’,σ’. This global SR|A|,n,|C|,θ’,σ’ will be
used to model the behavior of the users that do not have a
personal SR

The decision policy function Φ can be defined as a vector:

1 | |1( , ,..., )
IPIP IPΦ = Φ Φ Φ

Where Φ1 defines the policy for the global SR, and the remaining
functions define the policy for each one of the personal SRs. In
our study we are going to consider a common decision policy
function for all the personal SRs.

The tuple (RU,Φ) defines the on-line execution of the prediction
system. Given A the click stream of the last |A| pages requested by
user IP, the set of predicted pages will be given by:

( ( , ))RU IP AΦ

5.2 Implementation and Results Analysis
We have developed a PSBM for the NASA and ClarkNet logs.
The RU implemented for both cases is shown below:

D
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Where |IPD|=6,494 for the NASA log, and |IPD|=8,950 for
ClarkNet. For the construction of RU we decided that any user
that has more than two visits in the period of the training sets is a
frequent user and should have a personal SR. Table 5 presents the
characteristics of the personal SRs constructed.

Table 5. Characteristics of the Personal SR constructed.

NASA CLARKNET

# of personal SR 6946 8950

Average # of rules per SR 10.3 9.7

Total Processing Time 1 min 4 sec 2 min 30 sec

Figure 5 presents the prediction accuracy of the set of PSBM
constructed for the NASA log and the ClarkNet log. The test logs
in this case have been modified to contain only the set of visits of
the users that have a personal SR. This allows us to obtain the
prediction accuracy of the set of personal SRs.
Each set of columns presents the percentage of pages correctly
predicted for each test log using two different policy functions.

Φ1 gives the prediction accuracy using the consequent with the
highest confidence of each SR(IP). In both cases, NASA and
ClarkNet, the system achieves at least a 44% correct prediction.
Φ2 considers the two consequents with highest confidence, and in
that case the correct prediction is over 50%.
The global rate of correct prediction will be given by the
prediction rate of the global SR and by the prediction rate of the
set of personal SRs. In the case of the NASA logs, 75% of the
visits are generated by users that have a personal SR. In the rest of
the load, 25%, the prediction accuracy will be given by the global
SR1,1,1,1,5. Using Φ1 as the decision policy function gives a total
prediction accuracy of 0.36 (0.75*0.44+0.25*0.13). Using Φ2 the
prediction accuracy goes up to 0.43 (0.75*0.53+0.25*0.16).In the
case of the ClarkNet log, when using Φ1 the final accuracy is 0.33
and when using Φ2 it is 0.42.



Figure 5. Prediction Accuracy for the NASA log.
These results prove that the personalization introduced in the
prediction system produces satisfactory prediction rates with an
acceptable increase in memory usage. This increase in memory is
less significant when one takes into account that most sites
already have a lot information about each user for other
personalization purposes.

6. APPLICATION EXAMPLE: A WEB
PREFETCHING SYSTEM
Several researchers have previously studied the use of a prediction
system for intelligent prefetching. For example [30][31]
constructs a case-base reasoning system using a window-based
algorithm that finds pages that are visited together, [19] presents a
new algorithm, WM0, which is used to implement a web
prefetching algorithm, and [11] presents a system in which clients
initiate the prefetching of hyperlinks using the information that
the server disperses to all clients.
To illustrate how a Sequential Behavior Model can help improve
the generation and delivery of web content, we employ it to
implement an intelligent prefetching system. The purpose of this
example is also to more directly correlate prediction to
performance by obtaining a breakdown of the cache behavior to
understand when benefits arise because of the prediction system
and when the prediction system is wrong but the page happen to
be in the cache.
Figure 6 presents the general architecture of our approach. Each
session of the test log has a cache associated with it. At the
begining the cache is empty and we assume that we are working
with an unlimited cache size. For each page of each session the
system first looks if that page is in the local cache. If the page is
not in the cache, an http request is send to the web server. At the
same time, the cache sends the click stream to the web server.
With this data the intelligent web server sends the requested web
page to the cache and also, applying the Sequential Behavior
Model to the click stream, the predicted page. If the prediction is
correct, the next time the user sends an http request, the page will
already be in the cache. Therefore, the latency perceived will be
much smaller. Even in that situation, the cache will again send the
click stream to the server, which applies  the SBM to send the
next page to be visited.
Figures 7 and 8 present the results of the CS and NASA test logs
using the global Sequential Behavioral Model SR1,1,1,1,5. Figure 9
present the results for the NASA log using the Personalized
Sequential Behavior Model constructed with SR(IP)1,1,1,1,5 for
each frequent user and SR1,1,1,1,5 as the global prediction system.
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Figure 9. Results of NASA prefetching system based on PSBM

6.1 Result Analysis
Examining the results of the prefetching application developed we
can see that, as expected, the greater the accuracy of the
prediction system, the greater the total hit ratio of the cache is. We
can also see that the Partial Hit Ratio (the number of times that
the prediction system predicted incorrectly but the page happened
to be in the cache) is responsible for at least 25% of the hits in the
cache. We conclude that in these kinds of applications the
inherent properties of the cache are as important as the prediction
system in determining the total hit ratio.
This application also shows that using a PSBM in a highly
complex site allows to obtain the same results as when using a
global Sequential Behavior Model in a simple site. This proves
that PSBM is able to efficiently capture the behavior of complex
systems.
Although we have demonstrated the utility of our prediction
model for caching static content, such content is reasonably well
supported using current-day solutions such as caching
architectures or content distribution. In fact prediction-based
architectures have greater utility for serving dynamic and
personalized web content, which is growing in popularity and in
fact accounts for a large fraction of current day Internet traffic
[22]. In this context, the Model can be used to predict the next
page and use the prediction to pregenerate the page in order to
reduce latency.

7. CONCLUSIONS AND FUTURE WORK
We have considered the problem of modeling the behavior of a
Web user. A method to construct a Sequential Behavior Model
has been proposed. This method is able to capture the inherent
sequentiality of web visits. The model is constructed using a set of
Sequential Association Rules which reflect the order in the set of
URLs of the antecedent and the consequent, and also the distance
between the antecedent and the consequent measured in the
number n of clicks between the two click-streams. This distance
allows to design systems that not only predict which pages are
going to be visited but also when they are going to be visited. To
the best of our knowledge, our model is the only one to reflect this
distance metric.

The Sequential Behavior Model proposed is able to very
efficiently capture the  behavior of sites with a well-defined
architecture and with a small set of users. For more complex sites
we extend the Model with a personalization scheme where each
frequent user has a personal set of rules. One criticism of this
solution could be that it needs space to store the models. However
we show that taking into account that most of the sites already
have a lot of information about each user, the extra space needed
is not significant.
The Model has been designed as a black box to be used in any
application that is based in a prediction system. As an example of
this implementation we have developed a prefetching system. We
show that the Model achieves a high cache hit ratio both with the
global and the personal approach. Also, we show that in this kind
of application the inherent properties of the cache are as important
as the prediction system in determining the total hit ratio.
The paper presents two schemes which represent two extremes of
the  Model. In one of them we only care about global behavior
which produces a very small set of rules. This scheme is useful for
sites with a simple architecture. The other solution only cares
about local information, clustering the set of sessions according to
its IP. This solution is useful for highly interconnected sites. We
plan to generalize the model by defining intermediate solutions to
find an appropriate trade off between space and prediction
accuracy. These intermediate solutions will consist in clustering
the sessions that correspond to IPs that share a common prefix.
Another intermediate solution will consist of clustering the
sessions according to their similarity taking into account the
access order. With that set of clusters, a given IP will have its set
of sessions belong to a set of clusters and the behavior of that IP
can be inferred by mixing those clusters.
The filtering of records implemented does not remove the pages
that are caused by backtraking clicks. This will happen when users
realize that they have made wrong navigation choices and
therefore choose to return to previously visited pages. Future
versions of the filter will avoid this problem. With this new filter
the results of the experiments may be better.
We plan to apply our prediction model to the NYU HOME page.
NYU Home is a site that allows its users, the NYU community, to
personalize their channel contents, ranging from e-mail, to news
or weather forecasts. The site is slower that sites with static
content because the pages have to be generated on real-time. As
can be seen, this page has the ideal characteristics for the
implementation of a PSBM: it has a large set of frequent users and
the system already has personal information about each user. We
will decrease the latency time for each user by pregenerating the
pages using PSBM.
Also a deeper study  of the impact on the parameters of the model
in the prediction rate is needed. We are especially interested in
studying the results depending on the parameter n, the distance in
clicks between the antecedent and the consequent. The possibility
of knowing not only what pages are going to be requested but also
when are going to be requested can improve the efficiency of a lot
of services (prefetching, recommendation systems, etc.). It will be
also interesting to study the parameter C, the consequent of the
rules and to find the optimum |C| for a given system. Having
consequents with length bigger that one is useful for some
applications such as construction of web pages in real time or
prefetching.
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