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Abstract - Fuzzy logic has been successfully introduced in
control applications, but usually has the problem of low speed.
Fuzzy logic applications can be seen as any other signal
processing application, which, taking also into account that
DSPs are classical platforms in industrial environments,
makes a DSP a good candidate for high speed fuzzy
processing. This paper presents a real-time full-
programmable fuzzy processor using piecewise-linear
interpolation techniques and implements it using a DSP. A
full-programmable fuzzy processor is defined as a system
where the T-norm, T-comorm, aggregation operator,
propagation operator, rules, membership functions and
defuzzification algorithm can be defined by any valid
algorithm. Real-Time fuzzy processing is defined as
processing the knowledge base in a constant time and with a
minimum speed of 1 MFLIPS.

1. INTRODUCTION

DSPs are widely used in any kind of industrial application
which needs high speed processing for signal processing
applications.

Fuzzy Logic techniques are also used in industrial
applications, as nuclear plant supervision [9], medical
applications [10] or automotive applications[12]. In [11]
and [1] a wide variety of fuzzy logic applications are
presented. Nevertheless the main drawback of fuzzy logic
solutions ha been the processing speed of a fuzzy
knowledge base. Applications solved using fuzzy logic
techniques can be considered as any other signal processing
application. This allows to consider DSPs as a good
platform to execute fuzzy logic solutions.

[13] and [14] are examples of fuzzy logic applications
implemented on a DSP.

The problem of using a standard architecture, as a DSP, to
process a fuzzy logic system is the final speed obtained. In
this paper we present a compiler that allows to obtain real-
time capabilities in fuzzy logic processing when using a
DSP.

II. FUZZY PROCESSING: STATE OF THE ART

The need to process fuzzy knowledge base systems with
high speed resulted in the development of fuzzy hardware
architectures. This first developments were done in the
mid-80's by Togai [5] using a digital architecture, and by
Yamakawa [6] using analog techniques. Before that, other
ASICS designed to process fuzzy knowledge bases with
high speed were developed [4]{2][8].
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The problems of using ASICs are the final cost of the
platform, and that the final solution needs a host, which
will take care of the non-fuzzy logic processing. Those
problems can be solved using a standard architecture, as a
DSP. The reasons for using DSPs for high-speed fuzzy
processing are:

¢ DSPs have reached a point where their speed is fast
enough to process fuzzy systems with high speed.

* The use of a compiler that adapts a fuzzy system to a
DSP architecture allows to obtain high-speed.

The key concept is given by the second reason. The fuzzy
syntax of the rules is a very useful way to represent
knowledge, and the fuzzy algorithm is a very useful way of
processing it, but, it is not the best way to process it with a
standard architecture. So, in order to process fuzzy systems
with high speed with standard architectures, it is needed an
off-line processing, a compilation, from the fuzzy system
syntax to a syntax suitable for a standard architecture. This
compilation is usually done using the surface control of the
fuzzy system because can be obtained with mathematical
tools which can be executed very fast in a standard
architecture.

There are compilers developed mainly for Takagi-Sugeno
(TSK) systems, and are usually based on interpolation
B3114].

A characteristic common to all fuzzy coprocessors is that
only the set of rules and the membership functions of the
system can be defined, because the fuzzy algorithm is
implemented by hardware, and can not be programmed.
This problem is also presented in fuzzy compilers, they are
designed for a specific fuzzy system (usually TSK), and
again, only rules and membership functions can be defined.
In this paper a full-programmable fuzzy system is defined
as a system where the rules, membership functions, the T-
norm, the T-conorm, the propagation operator, the
aggregation operator, and the defuzzification algorithm can
be defined. A full-programmable fuzzy compiler will allow
to execute any kind of application using standard hardware.
In the rest of the paper, first a full-programmable fuzzy
compiler is introduced. Then, the high level architecture of
the controller is presented, and the following points present
the speed achieved for different systems.
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III. FULL-PROGRAMMABLE FUZZY MODEL

The model proposed is divided in an off-line processing
and an on-line processing.

A. Off-line processing

FS is a vector FS=(T,,T,PO,AO,D,RMF,MF,1,O) that
describes a fuzzy system with T, the T-norm, T, the T-
conorm, PO the propagation operator, AO the aggregation
operator, D the defuzification algorithm, R the set of Rules,
MF the membership functions of the input, MF, the
membership functions of the output, I the inputs and O the
outputs of the system.

For each I; € I, the Activation Intervals of I, Al, are
defined as the union of the set of intervals, left-closed and
right-open, except the last one which is also right-closed,
given by the extreme points of the kernel and the support of
each one of the membership functions defined in I,. Al is
obtained from (MF; ..., MF,,) with p=Card(MF)). Fig. 1
presents an example of Activation Intervals.

XX
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Al ={[A,B),[B,C),[C,D),[D,E),[E,F]}

Fig. 1 Activation Intervals Al

The Activation Intervals can be obtained from the
Activation Points. The Activation Points are defined as the
set of points of each dimension of the system that define
the kernel and support of each linguistic label. Formally,
the Activation Points, AP, can be obtained as:

AP;= F (F,(U(Supp(MF, ,) UKernel (MF,,,)))) with
m=1,...,p. @®

From that, the Activation Intervals, are obtained as:
AIi= F in(/lpi)) (2)

where Supp, and Kernel, are functions that obtain the
extreme points that define the kernel and the support of a
label, F, is a function that orders a set of points, F, is a
function that eliminates the repeated points of a set, and F;,
obtains the intervals, left-closed and right-open, that are
defined by a set of points.

Given Al;, i=1,...,Card(I), and S the n-dimensional input
space given by (I,...,I,), P is defined as a partition of S
given by the cartesian product (x) of Al;, i=1,...,Card(I):

P = xAl, i=1,...,Card(I). 3)

The partition P is defined in a way that separates zones
where the designer has a complete certainty of the output
from the zones where the certainty is only partial.

This is done by defining P from Al, because the Al, for
each dimension, separate the kernels of each label, the zone
where the designer has a complete certainty, from the
transition of the labels, where the certainty is only partial.

Example:

FS=(T,T,PO,AO,D,RMF,MF,1,0) is a fuzzy system
with the membership functions defined as seen in Fig. 2.
The set of MF defined are {AII;AIZ,AB} and {AZI)A22,A23}5
defined respectively in I; and I.. Al; and Al will be (Fig.
2):

AlL={[0,A),[A,B),[B,C),[C,D),[D,E]},
ADL={[0,A),[AB),[B,C),[C,D)[D\E]}.

P can be calculated with AI; and Al (Fig. 2):

P={{[0A),[0,A)},{[0,A),[A,B)},{[0,A),[B',C)}...}.
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Fig.2: Representation of MF, Al and P of FS
L

The model is based on the value of the fuzzy system FS in
the set of vertex that define P, For that, the matrix V is
defined as a matrix that contains the set of vertex of
partition P. V can be obtained from the Activation Points
as:

V = xAP, i=1,...,Card(I). “

The Characteristic Matrix CM contains the value of the
fuzzy system FS in each vertex of the partition P. CM is
defined as:

CM=FS(V), )

where FS(V) represents the value of each element of matrix
V in the fuzzy system given by FS=(T,,T,PO,AO ,D,R,MF,
MF,L0).
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Example:
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Fig. 3 Partition P of the fuzzy system FS

Given FS a bidimensional fuzzy system (Fig. 3), and P the
partition of the input space, V and CM can be obtained as:

(A',A) (A',B)
(B',A) (B',B)
(C',A) (C',B)
(D', A) (D', B)

(A4',C) (A", D)
(B'.C) (B',D)
(€C'.C) (C',D)
(D', C) (D'.D)

SB(A', A)
SB(B', A)
= SB(C', A)

SB(D', A)

SB(A', B)
SB(B',B)
SB(C',B)
SB(D', B)

SB(A'.C)
SB(B',C)
SB(C',C)
SB(D",C)

SB(A', D)
SB(B', D)
SB(C', D)
SB(D', D)

n
B. Equalization and Normalization of the inputs

The compiler also defines a set of equalization and
normalization functions.

An equalization function, Ey(l}), is defined for each input
of the system as:

0if I} € Al

1if 1, e Al
k k,1
E )= 6

p-lif Iy e Aly

with k=J...Card(l) and p=Card(IA,). The equalization
function is defined to identify in which Activation Interval
is the input included. The set of values of the equalization
functions of a system allow to identify the active cell, the
cell in which the input is included.

A normalization function, Ny (I), is defined for each
Activation Interval of each dimension & The
normalization function normalizes between 0 and 1 the
actual input in the active cell. The normalization function
Ny (1) is defined as:

Nk,r -

I, -A 7
(B—A)(k ) )

Fig. 4 shows the normalization done by N (I;).

405

Fig.4 Normalization done by Ny (/).

The proposed model defines a compilation of the
programmable fuzzy system FS to a specification of the
same system (Characteristic Matrix, Equalization
functions and Normalization functions) suitable to be
executed in a standard architecture.

C. On-line processing
The on-line processing is divided in two steps:

o The first step obtains the relevant information to obtain
the output of the system. First of all, the equalization of
each dimension of the system is obtained as:

a;=E(l}), ..., an = EJ(I,). ®)

The vector (ay,...,a,) identifies the cell of P in which the
input is included. The Characteristic Vector of an input,
CV(I), is defined as the set of 2" output values of the
original fuzzy systems in the set of vertex that define the
cell in which the input is included. CV(I) can be obtained
from the Characteristic Matrix, CM, as:

V() = (CM M oy ay i+l

ay,8y,...4n " M
In this step, the normalization of the input in the active
cell, N(I), is also obtained as:

N()=(Ny, UDwrNpg () (10)
l,a] 1 n

e The second step, using the information given by the
Characteristic Vector, CV(I), and N(I), calculates the
output of the system O. The output of the fuzzy model O,
will be calculated with a function F, of CV(I) and N(I):
O = F, (VC(I),N(1)). an
F, has to produce a value similar to the output produced
by the fuzzy system FS, and it has to be evaluated with
high speed. The F, proposed for the model is a multilinear
interpolation among the values of VC(I) using N(I).

IV. ARCHITECTURE OF THE CONTROLLER

The controller implemented is divided in four modules, the
sensor, the interpolation cache, the model memory and the
inference engine, interconnected as seen in Fig. 5.
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Fig. 5. Interconetion of the modules of the Controller

A. Sensor

The sensor implements the set of Equalization and
Normalization functions, Ey(ly), N,(I;). Typically in a
control systems this functions can de discretized, so in
execution time there is no need to evaluate them.

From the input of the system /, the sensor obtains (a,,...,a,)
and N(I).

B. Model Memory

The Model Memory stores the Characteristic Matrix of the
system, CM.

C. Interpolation Cache

The Interpolation Cache receives the equalization and the
normalization of the input from the sensor. From the
equalization of the input, it obtains the Characteristic
Vector CV.

The interpolation cache receives the equalization of the
inputs, and compares if the present input is in the same
cell as the previous one. If the input is in the same cell, the
actual Characteristic Vector CV will be equal to the
previous one, so there is no need to access the Model
Memory, and, if not, the Interpolation Cache accesses the
Model Memory and obtains the new CV.

Due to the locality of the inputs, if an input is in a cell P,
the most possible situation is that the next input of the
system /, will be in the same cell P,. This means that the
Inference Engine will have to work with the same CV as
the one used in the previous inference, so there is no need
to access again the Model Memory to obtain it.

The output of the Interpolation Cache is the Characteristic
Vector CV and the normalization of the input.

D. Inference Engine

The inference engine receives the Characteristic Vector
CV and the normalization of the input N(/) and obtains the
output O applying multilinear interpolation.

For a N-dimensional input system, the number of
interpolations will be 2 - /. The number of interpolations
with the first dimension will be 2"/ For the second
dimension the number of interpolations will be 2", and so
on. These interpolations have dependencies among them.

The interpolations related with the variable &, can not be
done until all the interpolations related with the variable k-
I have been done.

The code that implements the Inference engine is very
simple, and consist on doing the necessary number of
interpolations. And example of the code of a 2 input / 1
output inference engine in C is:

Tmp0=CV[0]+N[0]*(CV[1]-CV[0]);
Tmpl=CV[2]+N[0IX(CV[3]-CV[2]);
Output=TmpO0+N[1]*(TmpI-Tmp0);

Where N[0] and N[1] are the normalized values of the two
dimensions of the system, and CV is the structure that
implements the Characteristic Vector. The output of the
system is stored in Output. Although this code could have
been implemented using a loop, it has been unrolled in
order to achieve higher speed when executing the code.
This proves that the model compiles the knowledge an
adapts it to be executed in an efficient way in a standard
architecture.

V. OUTPUT COMPARISSON OF THE SYSTEM

This point gives a comparisson between the output of FS
and the output obtained with the proposed model.

The comparison is made for a 2 Input / 1 Output system
with Max-Min as inference system and COG as
deffuzzification algorithm. The results are obtained from
comparing 48682 values of the two systems. The results
are summarized in Table 1.

Table 1. Results of the Comparisson of the two models.

Values without Error 35 %
Values with Error < 10 units 65 %
Average of the Error 11 units |

The range of the output of the system is 1900 units, and an
average error of 11 units makes that the error of the output
is in average 0.77% over the range of the output.

Fig. 6 Surface Control obtained with the model.
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Fig. 7 Surface Control obtained with the Fuzzy System S.

Because the special characteristics of the design of a fuzzy
system, the important thing is not the concrete value for a
given point, but the general behavior of the system. This
comparison can be made using the surface control given
by both controllers in Fig 6 and Fig. 7.

The surface control of the model has been obtained with
Matlab, and the one of the fuzzy system FS with
FuzzyTECH[1].

The conclusion is that the model gives the same behavior
as the fuzzy system, but with less information. This is
because the compiler is designed to keep the certainty of
the designer. This is done by defining the partition P from
the Activation Intervals, because the Activation Intervals,
for each dimension, separate the zones of certainty of the
designer, the kernel of the label, from the zones where the
certainty is only partial, the transition between 0 and 1 of
the labels.

VI. SPEED COMPARISSON OF THE SYSTEM

The system has been implemented in a Texas Instruments
(TDH) DSP, TMS320C6201[7). The implementation has
been done in a DSP because is the typical architecture for
signal processing, and because it has been designed for
high speed processing.

The code has been developed in C, and has been optimized
successfully using TI compiler options. Although the code
has been developed in a high level language the speed
achieved is very satisfactory. This has an important
advantage, the inference engine developed can be
executed in any architecture with C support.

The speed has been tested with a 2 input / 1 Output
system, a 3 Input / 1 Output system and a 4 Input / 1
Output system. The results obtained can be seen in Table

Table 2. Execution Time of the model on a C6201

System Clock Cycles Time (ns) MFLIPS
21/10 44 220 ns 4.5
31/10 106 512 ns 1.8
41/10 211 1055 ns 0.95
407

The results given in Table 2 are completely satisfactory,
and can be compared with the results obtained with others
architectures. Table 3 gives the time response of some
fuzzy coprocessors to compare the speed obtained.

Table 3.Processing Time of some Fuzzy Coprocessors

System FZP-0401A| _WARP 2.0] SAESIC99
21/10 | 0.48 MFLIPS

31/10 12 ps
VX R e — EER Ty e —

FZP-0401A[4] is an ASIC that processes fuzzy systems
also using interpolation but only for Takagi Sugeno
system. WARP 2.0{8] and SAE81C99[2] are fuzzy
commercial coprocessors of ST Microelectronics and
Siemens respectively.

The conclusion is that standard architectures can process
fuzzy knowledge even faster than specialized coprocessors
using a compilation that adapts the knowledge to the
standard architecture.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented a compiler that allows to execute
real-time full-programmable fuzzy systems using a DSP.
This is extremely useful because fuzzy logic is being
introduced in more and more industrial applications,
which usually require high speed, and because a DSP is a
typical platform in industrial environments. Using a
standard architecture as a DSP allows to develop the final
solution very fast and at a low cost, compared to specific
fuzzy circuits. Also, a full-programmable model allows to
use the same hardware and the same model with any kind
of application

The final speed obtained can be improved using the new
elements of the family, for example, the last development
of the C62 family, the C6203 has a 3.3 ns clock (300
MHz.), which will allow to multiply the speed obtained by
3/2.

The compiler proposed does not depend on any special
architecture an can be executed in other DSPs, or other
architectures like MCU and microcoprocessorss using the
same code.
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