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ABSTRACT
This paper assesses the potential of ride-sharing for reducing
traffic in a city – based on mobility data extracted from 3G
Call Description Records (CDRs), for the cities of Madrid
and Barcelona (BCN), and from OSNs, such as Twitter and
Foursquare (FSQ), collected for the cities of New York (NY)
and Los Angeles (LA). First, we analyze these data sets to
understand mobility patterns, home and work locations, and
social ties between users. Then, we develop an efficient algo-
rithm for matching users with similar mobility patterns, con-
sidering a range of constraints, including social distance. The
solution provides an upper bound to the potential decrease
in the number of cars in a city that can be achieved by ride-
sharing. Our results indicate that this decrease can be as high
as 31%, when users are willing to ride with friends of friends.
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INTRODUCTION
Ride-sharing is a promising approach for reducing car usage
in a city, which is beneficial both for individuals [1], e.g. re-
ducing gasoline, and for the city as a whole [2], e.g. reduc-
ing traffic and pollution. In recent years, a plethora of web
and smartphone-based solutions have emerged for facilitat-
ing intelligent traffic management [3] and ride-sharing in par-
ticular. Early web-based systems, like carpooling.com,
and eRideShare.com, provide matching of users for long
distance travel as well as local ride-sharing, and have at-
tracted a few million users across Europe and the US. More
recently, companies like Avego.com or Uber.com offer
smartphone apps that allow drivers and passengers to be
matched; drivers offer cheaper peer-to-peer taxi services.

Smartphone-based ride-sharing technology gains momentum
but still needs to deal with several issues including safety
(traveling with strangers), liability (e.g. accidents), as well as
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the bootstrapping problem (the more users a ride-sharing ser-
vice has, the more the ride-sharing opportunities). However,
even if the above problems were completely solved, the op-
portunities for ride-sharing would still depend on the under-
lying human mobility patterns and the layout of a city, which
ultimately determine the route overlap.

In this paper, we seek to understand what is the potential de-
crease in the number of cars in a city if people with similar
mobility patterns are willing to use ride-sharing in their daily
home/work commute. This is clearly an upper bound to the
actual benefit of any practical system but it can be used to
guide the deployment and policies regarding ride-sharing in a
city. We assess this potential in four major cities using mobile
and social data; we obtained two CDR data sets from a major
cell provider (Madrid and BCN, in Spain, Europe), and we
also collected data from Twitter (geo-tagged tweets) and FSQ
(NY and LA, in US). A similar question has been asked be-
fore in [4], where the authors assumed a uniform distribution
of home/work locations and concluded that ride-sharing has
negligible potential. In contrast, we find that ride-sharing can
provide significant benefits, depending on the spatial, tempo-
ral and social constraints for matching users. In particular, we
take the following steps.

First, we infer home/work location of individual users, by
adapting state-of-the-art techniques [5] to our CDRs and geo-
tagged tweets. Also, we infer social ties among the users; we
use phone calls in the CDR data and explicitly stated friend-
ship in the Twitter data. These ties are later used for social
filtering, to address concerns about riding with strangers.

Second, given a set of users with known home/work lo-
cations, we develop a framework for matching users that
could share a ride. Our goal is to minimize the total num-
bers of cars and provide rides to as many users as possi-
ble. We consider several constraints including: spatial (ride-
sharing with neighbors, i.e. someone within a certain dis-
tance from their home/work location), temporal (ride-sharing
within a time window from the desired departure/arrival time)
and social (ride-sharing with friends or friend-or-friends)
constraints. We also consider two versions of the problem:
End-Points RS, ride-sharing between home and work lo-
cations, and En-Route RS, allowing the possibility to pick
up passengers along this route. Our formulation is rooted
at the Capacitated Facility Location Problem with Unsplit-
table Demand. Since this is an NP-hard problem [6], and we
want match more than 272K drivers and passengers, we de-
velop efficient heuristic algorithms, namely End-Points
Matching and En-Route Matching to solve the two
aforementioned problems.



Third, we use our framework to assess the inherent potential
of ride-sharing to exploit the overlap in people’s commute in
a city. We find that there is significant potential for reduc-
ing traffic via ride–sharing, the exact magnitude of which de-
pends on the constraints assumed for matching, as well as
on the characteristics of the cities and the type of data set
(CDR vs Twitter). For example, our study shows that traffic
in Madrid can be reduced by 59% if users are willing to share
a ride with people who live and work within 1 km; if they can
only accept a pick-up and drop-off delay up to 10 minutes,
this potential benefit drops to 24%; if drivers also pick up pas-
sengers along the way, this number increases to 53%. If users
are willing to ride only with people they know (“friends” in
the CDR and OSN data sets), the potential of ride-sharing
becomes negligible; if they are willing to ride with friends
of friends, the potential reduction is up to 31%. Albeit upper
bounds to the actual benefit, these positive results encourage
the deployment and policies in favor of ride-sharing.

The structure of the rest of the paper is as follows. Section
2 reviews related work. Section 3 presents our data sets, the
methodology for inferring home and work location of indi-
vidual users, and a characterization of the data sets that pro-
vides insight into the next steps. Section 4 provides the for-
mulation of the End-Points RS problem, an efficient al-
gorithm End-Points Matching for solving it, and re-
sults from applying it on the data sets. Section 5 provides
the formulation of the En-Route RS problem, an efficient
heuristic En-Route Matching for solving it, and results
from applying it on the data sets. In Section 6 we first charac-
terize the social ties in our data sets, then we further restrict
the matching using social distance, and only allow users that
know each other, or have common friends, to ride together.
Section 7 provides a comparison across the four cities stud-
ied. Section 8 summarizes the results and concludes the paper.

RELATED WORK
Traditionally, carpooling studies focused in characterizing the
behavior of carpoolers, identifying the individuals who are
most likely to carpool and explaining what are the main fac-
tors that affect their decision [7]. Instead, in this paper we
focus on assessing its potential for traffic reduction in a city.
A similar study has been done before in [4], which assumed
a uniform distribution of home/work locations in a city, and
concluded that ride-sharing has little potential for traffic re-
duction. In contrast, we infer home/work locations from CDR
and Twitter data and we find that they are far from uniform.

Some ride–sharing systems have been built over GPS [8, 9]
data. He et al. [8] presents a route–mining algorithm that ex-
tracts frequent routes and provides ride-sharing recommen-
dations based on these routes; they use the GPS traces of 178
individuals. Trasarti et al. [9] use GPS data to build mobil-
ity profiles for 2107 individuals, and match users with similar
profiles; they also apply their algorithms to a GSM-like data
set, which they synthesize by reducing the size of their GPS
data. Bicocchi et al. [10] extract common routes from mo-
bile traces and use them for ride-sharing recommendations.
To the best of our knowledge, our work is the first attempt to
study the potential of ride–sharing using CDR and OSN data.
Although, our data have coarser granularity in terms of user

trajectories (since we observe a user’s location only when she
makes a call or posts a geo-tagged tweet), they have infor-
mation about orders of magnitude more users than previous
carpooling studies and thus are better positioned to answer
the question about the city-wide benefits of ride-sharing.

Compared to commercial ride-sharing systems, such as
Avego, Lyft, Uber: our work is partly based on pub-
licly available (e.g. geo-tagged tweets) as opposed to propri-
etary data; it has a larger number of users for the cities stud-
ied; it takes into account social ties for matching drivers and
passengers; and it assesses offline the city-wide benefit of ride
sharing, as opposed to online matching of passengers with a
small set of dedicated drivers.

Our methodology on inferring home/work locations for indi-
viduals builds upon a recent work by Isaacman et al. [5, 11],
on inferring important places from CDR. Social aspects of
CDRs, i.e. the call graph, has been studied in [12], [13]. In
this paper, we combine both aspects, namely inferred loca-
tions and social ties, to restrict ride sharing accordingly. We
do the same with the Twitter data too.

Other related studies focus on characterizing crowd mobility
and urban environments using information from Twitter or
FSQ. Wakamiya et al. [14] and Fujisaka et al. [15] have used
geo-tagged Twitter data to study crowd mobility, and Frias-
Martinez et al. [16] to characterize land use. FSQ has been
used by Noulas et al. [17], [18] for modeling crowd activity.
To the best of our knowledge, Twitter and FSQ data have not
been used for carpooling.

The most closely related work is our preliminary study [19].
Compared to [19], in this paper we make the following ad-
ditional contributions: (1) we collect data from Twitter (geo-
tagged tweets for NY and LA) in addition to CDRs, (2) we
use CDRs from BCN, (3) we compare among the four cities,
(4) we restrict ride sharing opportunities based on social ties,
and (5) we estimate users’ departure times from the data, in-
stead of assuming a distribution.

INFERRING HOME/WORK LOCATIONS FROM DATA
The first step in assessing the benefits of ride-sharing is to
infer where people live and work. To achieve this, we build on
a state-of-the-art methodology that has been proven to infer
important locations in people’s lives with adequate accuracy
[5]. We apply their methodology with some modifications in
order to make it applicable to our scenario.

Data Sets
Tab. 1 summarizes our data sets, and the following subsec-
tions describe the data collection process.

Cell Phone Data
CDRs are generated when a cellphone makes or receives a
call or uses a service, e.g. SMS. Information regarding the
time/date and the location of the Base Transceiver Station
(BTS), used for the communication, are then recorded. More
specifically, the main fields of each CDR entry are the fol-
lowing: (1) the originating cellphone number (2) the destina-
tion cellphone number (3) a time-stamp (when call started)
(4) the duration of the call and (5) the BTS tower used by



Data Set Name Period Number of
Records

Total
Users

Home/Work
Users

CDR–Madrid Sep 2013 - Dec 2013 820M 4.70M 272,479
CDR–BCN Sep 2013 - Dec 2013 465M 2.98M 133,740
Twitter–NY Nov 2012 - Feb 2013 5.70M 225K 71,977
Twitter–LA Nov 2012 - Feb 2013 3.23M 155K 43,575
FSQ–NY Nov 2012 - Feb 2013 362K 31.3K –
FSQ–LA Nov 2012 - Feb 2013 134K 13.6K –
FSQ–US Dec 2009 - Aug 2011 1.47M 40.1K –

Table 1. Description of our data sets. The right column shows the num-
ber of users with inferred Home/Work locations, which is a subset of all
the users. The Foursquare data sets were used to tune and validate the
home/work inference methodology, for the Twitter data sets.

(a) Headquarters of Telefon-
ica in Madrid

(b) Home Area. Coordi-
nates: 40.503736, -3.635469

Figure 1. Example of residential and working areas

one, or both if applicable, cellphones. CDRs’ spatial granu-
larity varies from a few hundred m2, in urban areas, to up to
a few km2 in rural areas, therefore users’ exact positions in-
side BTS areas are unknown. The CDRs used for this study
are from the period of September 2009 – December 2009, ex-
cluding the last two weeks of December, which are holidays.

Twitter and Foursquare (FSQ)
Many users access Twitter from mobile apps and some of
them choose to reveal their current location (typically as GPS
coordinates) in their tweets, thus making Twitter an impor-
tant source of human mobility information. We used the Twit-
ter’s Streaming API [20] in order to obtain individuals’ mobil-
ity traces in large geographic areas. We collected geo-tagged
tweets from the metropolitan areas New York and Los Ange-
les for a period of four months – from November 2012 until
February 2013. This was possible thanks to Twitter’s Public
Stream Service where you can specify the geographic area
that you are interested in. See Tab. 1 for more details.

Geo-tagged tweets contain location information, but they lack
location semantics, which are crucial for inferring individ-
uals’ home/work locations and commuting routes. We col-
lected this information from FSQ – a large location-based
OSN with more than 30M users. FSQ does not provide an
API for data collection but its users can post their check-ins
in Twitter and other OSNs. We obtained FSQ check-ins from
our Twitter data set. In addition, we exploited another FSQ
data set that we obtained with the help of the authors of [21].
The latest data set was obtained by crawling publicly avail-
able tweets of check-ins in the US, and spans the period: De-
cember 2009 - August 2011. See Tab. 1 for more details.

Home/Work inference methodology
We apply the methodology of Isaacman et al. [5] for inferring
important places for cell phone subscribers from (1) CDR
data and (2) ground truth for a subset of subscribers. First

the recorded cell towers of a user are clustered to produce
the list of places that the user visits. Then, regression analy-
sis is applied to the ground truth users (clusters and their true
important locations) to determine the features of the clusters
that represent important places. The used features are: (1) the
number of days that the user appeared on the cluster; (2) the
duration of user appearances on the cluster; and (3) the rank
of the cluster based on number of days appeared. Once impor-
tant locations have been inferred, and the algorithm chooses
which of these are home and which are work locations. Ac-
cording to their results, the best features that characterize
home and work are: (4) the number of phone calls between
7PM - 7AM, i.e. Home Hour Events, and (5) number of phone
calls between 1PM - 5PM, i.e. Work Hour Events.

For our CDRs, first, we filter out users for whom we have too
little data: i.e. users with less than 1 call per day on average,
or less than 2 clusters with 3 days of appearance and 2 weeks
of duration – the specific filtering parameters are consistent
with [5]. Then, we tune the methodology of [5] to our needs.
More specifically, we build two classifiers, one for home and
one for work, and we train them using the 5 features described
above and the ground truth, which is described in the follow-
ing section. Once the training on the ground truth is done,
we apply the classifiers to the rest of the users. Finally, af-
ter classification, we keep only the users who have only one
inferred home location, and a different inferred work loca-
tion, since we are interested only in commuters. Applying the
home/work inference methodology to our CDR data, we are
able to infer the home/work locations of more than 272K in-
dividual users in Madrid, and more than 133K users in BCN
(See Tab. 1). Finally, we apply the same methodology in our
Twitter data – FSQ data serves as ground truth – and we infer
home/work locations for 71K users NY, and 43K users in LA.

Obtaining Ground Truth
In [5], a set of 37 volunteers reported their most important lo-
cations, including home and work. This was used to tune their
methodology, i.e. in the regression analysis, before applying
it to the rest of their users – around 170K.

Ground Truth for CDR Data: For the CDR data, we obtained
our ground truth for a select subset of users based on a previ-
ous study [22], which characterizes areas in Madrid. In par-
ticular, we exploited strictly residential and strictly industrial
areas (see Fig. 1 for example), which offer a clear distinction
between home and work. To this end, we selected 160 users
that appeared for many days in only one such residential area
during 7PM - 7AM (“home hours”), and only one such indus-
trial area during 1PM - 5PM (“work hours”). Then, the loca-
tion inside the residential area is pointed as the user’s Home,
while the location inside the industrial area is pointed as the
user’s work. For each one of the 160 users, we visually in-
spected their recorded locations through Google Earth. Fig. 2
shows a selected ground truth user.

Ground Truth for Twitter Data: We used the Foursquare data
to build the ground truth for the geo-tagged Twitter data sets
by selecting users who appear more than a week in a location
tagged as Home(Private), and the same duration in a location
containing one of the tags: Professional, Office, or Work. For



(a) A “ground truth” user

(b) Zooming in at
home

(c) Zooming in at work

Figure 2. A ground truth example. The red paddles show the cell towers,
while the blue pushpins the clusters. The numbers next to each mark
indicate the number of weekdays and weekends she appeared in that
location. Also, the size of each mark is proportional to the days of ap-
pearance.
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Figure 3. CDF of error for the home/work inference methodology. In-
ferred home/work locations from Twitter are compared against the de-
clared locations in Foursquare.

Percentile 25th 50th 75th 95th

Our Home Error 0.0 0.01 0.49 13.62
Home Error in [5] 0.85 1.45 2.06 6.21
Our Work Error 0.1 0.03 1.52 16.09
Work Error [5] 1.0 1.34 3.7 34.17

Table 2. Comparing the home/work identification error to [5].

each one of these users we define their home to be the location
tagged as home with highest number of days of appearance,
and as work the location tagged as work with most days of
appearance. We also manually inspect their Twitter account
and, when possible, their LinkedIn accounts. In the FSQ-US
data set, we found 481 such users, and in the FSQ-NY and
FSQ-LA data sets we found 98.

Validation

Figure 4. Characterizing Madrid based on the inferred home/work loca-
tions, and comparison to the characterization of [22]. We break the city
into a grid, and color each square with a combination of green and red.
Green squares have relatively more home than work locations; while red
squares have relatively more work than home locations. We observe that
the squares that we colored red contain contain more circles, indicating
industrial and commercial zones, than residential zones. Also, squares
colored green contain more residential than industrial zones.

(a) Inferred (b) Uniform

Figure 5. Inferred vs. uniformly distributed home/work locations.
Fig 5(a) shows a city with segregated home and work areas, while
Fig. 5(b) shows a city where all areas are the same.

Fig. 3 shows the accuracy of the home/work inference
methodology for our Twitter data set. We use the FSQ-US
data set to train the classifiers. Then, for the ground truth
users that appear both in the Twitter data set and the FSQ
data set, we infer their home/work locations using the geo-
tagged tweets, and then we compare the inferred home/work
locations to the ones in FSQ. In Tab. 2 we compare the ac-
curacy of the home/work identification methodology with the
reported accuracy in [5]. We see that in the case of the 75th

percentile the home error has decreased by 76% , and the
work error has decreased by 59%. For a few cases, our er-
ror is higher. We attribute our overall higher accuracy to the
more precise location information in the Twitter-Foursquare
data sets. Finally, Fig. 4 shows a visual comparison between
our results and the characterization of the Madrid’s areas
from [22], and indicates a strong agreement between our re-
sults and the related work.

Differences from the Uniform Distribution
We find that home/work distribution is far from uniform,
which was assumed in [4], in the following aspects:

Segregation of home and work areas: According to Fig. 5,
Madrid contains segregated home and work (e.g. industrial)
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Figure 7. Distance between home and work locations. 7(a) shows the
square grid with most homes (yellow paddle), and where are the cor-
responding work locations; stronger the colors indicate higher concen-
tration of work locations. Users tend to work close to home.
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Figure 8. Distances between users who have social ties – inferred from
the calls – vs. distance between random strangers. The distance between
two users u and v is the maximum of their home and work distance. This
figure indicates correlation between social and geographic proximity.

areas. In work areas, there is a relatively large number of
working places, while in home areas there is a relatively large
number of home locations Fig. 5(a). To illustrate the differ-
ence, we show how the city would look if the home/work
distribution were uniform, Fig. 5(b).

Non-uniform density: The density of home and work loca-
tions in various areas is quite different from uniform, as
shown in Fig. 6; 30% of most popular home areas – areas
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Figure 9. Distribution of home-departure Times. A normal distribution
with mean at 9 am, and standard deviation 30 minutes, is a close approx-
imation to the inferred departure times from our data. The continuous
line is what we get via Kernel Density Estimation from our data.

with most home locations – contain 75% of the homes; if
home/work distribution was uniform then the top 30% of
home areas would contain only 30% of the homes.

Relatively short home-work distances: As seen in Fig. 7, users
tend to work close to where they live. For the grid square
with the highest number of users who have their home there,
as shown in Fig. 7(a), the corresponding work locations tend
to be close by. Also, according to Fig. 7(b), the home-work
distances are shorter compared to what they would be if home
and work were randomly distributed.

Geographic distances and social ties: In a later section, we
will consider social ties among users, inferred from calls
(CDRs), or declared relations (Twitter). In Fig. 8, we com-
pare the average distance of each user u to her friends, vs. her
geographic distance to randomly selected strangers (i.e., users
who are not neighbors of u in the social graph). According to
Fig. 8, the geographic distance between users who have social
ties are shorter, on average, in comparison to strangers.

Departure Times
We estimate departure times of individual users from consec-
utive home/work calls. More specifically, we use pairs of calls
where one is a home call, the other a work call, and the time
difference between the calls is less than 2·trip_time, where
trip_time is the time distance between home and work, as ob-
tained from a popular Online Map service.

For each user, we find her departure time from home by taking
the median of the calls, that: (1) were made between 8 am
and 10 am from home, and (2) were followed by a work call
no more than 2·trip_time later. Similarly, we find her work
departure time, by taking the median of the calls, that : (1)
were made from work between 4pm and 6pm, and (2) were
followed by a home call no more than 2·trip_time later.

The distribution of home departure times for all individuals
who had such calls is shown in Fig. 9 – each individual is
required to have at least three such calls; there were 484 such



users in our data set. The departure time from work follows a
similar distribution, which is omitted due to lack of space.

END-POINTS RIDE-SHARING
In this section, we formulate the problem of End-Points
RS, i.e. ride-sharing among people that live and work close
to each other. We develop a practical algorithm, we apply it
to the users with inferred home/work locations, and we com-
pute the number of cars that can be reduced under different
scenarios.

Formulation
Let V denote a set of potential drivers and c(v) the capacity,
in terms of available seats, of the car of driver v ∈ V and
p(v) a penalty paid if driver v is selected for driving her car
and picking up passengers. Let h(v, u) denote the geographic
distance between the home locations of drivers v and u and
w(v, u) the corresponding distance between their work loca-
tions. Let δ denote the maximum acceptable distance between
a driver’s home/work and the home/work of passengers that
she can pick up in her car, i.e., v can have u as passenger only
if: max(h(u, v), w(u, v)) ≤ δ
Let d(v, u) denote a virtual distance between v and u, defined
as follows:

d(v, u) =


h(v, u) + w(v, u),
if max(h(v, u), w(v, u)) ≤ δ

∞, otherwise

Our objective is to select a subset of drivers S ⊆ V , and find
an assignment a : V → S, that minimizes P (S) +D(S), the
sum of penalty and distance costs, while satisfying the capac-
ity constraints of cars. The two costs are defined as follows:

P (S) =
∑
v∈S

p(v) and D(S) =
∑
v∈V

d(a(v), v)

where a(v) ∈ S is the driver in S that is assigned to pick up
passenger v (can be himself if v is selected as a driver). By
setting p(v) > 2δ · c(v) we make sure that an optimal solu-
tion will not increase the number of cars in order to decrease
the (pickup) distance cost between a driver and its passen-
gers 1. The above problem is an NP-hard Capacitated Fa-
cility Location Problem with Unsplittable Demand in metric
distance: the set of potential drivers corresponds to the set of
locations; the set of chosen drivers corresponds to opened fa-
cilities; car capacity corresponds to facility capacity; distance
d(v, u) corresponds to the cost of assigning a location v to the
facility u. Efficient approximation algorithms are known for
this type of facility location problem [6].

The above formulation includes spatial constraints only. Next,
we refine our formulation to include time. In the previous sec-
tion (see Fig. 9), we showed that departures from home and
work can be approximated by a normal distribution, centered
1For all (u, v) pairs withing constraints, d(v, u) ≤ 2δ, therefore in
worst case a full car v can increase the total cost by 2δ · c(v). We set
the penalty for every car, to be higher that the worst case scenario.

at 9 am and 5 pm respectively, with standard deviation σ. We
introduce the delay tolerance τ that captures the maximum
amount of time that an individual can deviate from her normal
schedule in order to share a ride. More specifically, if LH(u)
denotes the time a person u leaves home to go to work, and
LW (u) expresses the time she leaves work in order to return
to home. Then, two people u and v, can share a ride only if:

max(|LH(u)− LH(v)|, |LW (u)− LW (v)|) ≤ τ

The introduction of the temporal constrains will change the
virtual distance between v and u to the following :

d(v, u) =


h(v, u) + w(v, u),
if max(h(v, u), w(v, u)) ≤ δ
AND |LH(u)− LH(v)| ≤ τ
AND |LW (u)− LW (v)| ≤ τ

∞, otherwise

A Practical Algorithm
In this section, we modify the existing approximation algo-
rithm [6] for the facility location problem described above
and design a heuristic that can cope with the size of our
matching needs, the biggest of which has 272K users.

The algorithm in [6] starts with a random solution and im-
proves it iteratively via local search. At each iteration, there
are O(n2) candidate solutions, where n corresponds to the
number of potential drivers. For each one of them, it finds the
assignment (passengers to drivers) that minimizes the cost;
this is done in polynomial time by solving an appropriately
defined instance of the transportation problem. The algorithm
terminates when local search cannot find a better solution.

We modify the algorithm in three ways. First, since the qual-
ity of the solution depends mostly on the number of drivers,
we try to keep that number as low as possible. Therefore,
we use the b-matching [23] algorithm to generate the initial
solution, instead of generating it randomly. The input to the
b-matching algorithm consists of the set of potential drivers
V , a function o(v) that defines the set options for a potential
driver v i.e. o(v) = {u|d(u, v) < inf}, and a global ordering
of the potential drivers, O. The global ordering will be based
on the number of options; the fewer the options, the higher
the position in O. By using b-matching with a global order
we are guaranteed to find a solution in O(n) time [23]. For
each match generated by b-matching, we assign the potential
driver with the most occupied seats to drive; we make sure
that every user in V appears in only one car. This solution has
much lower cost than the random one by paying O(nlog(n))
for sorting the users to generate the global preference list and
O(n) for the matching.

Second, solving a transportation problem with 272K users is
computationally expensive. Therefore, we need to modify the
local search steps of the approximation algorithm. Given an
initial solution we leave the users commuting in cars of four
as they are and search for better assignments only for the rest.
This reduces the size of the transportation problem and speeds
up the process of generating the assignment.
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Third, reducing the size of the transportation problem is not
enough; we also need to reduce the neighborhood of candi-
date solutions. Given an initial set of drivers, S, we create a
fixed size neighborhood, where each solution S′ is created by
doing random changes in S. The reason why we do that is
because considering all potential solutions that differ from S
only by one, means that we have to examineO(n2) candidate
solutions; that makes each iteration very expensive. There-
fore, the fixed size solution helps us speed up the time we
spend in each improvement step.

Without the above modifications it would be impossible to
solve the problem in real time. Solving an instance of the
transportation problem for 270K users required a couple of
hours for δ = 0.6 km, and even more when δ = 0.8 or
δ = 1.0 km. Therefore, solving O(n2) such problems for
a single iteration becomes too expensive. Moreover, in our
experiments, we observed that the improvement steps would
add little value to the solution offered by the b-matching.

Results
We now calculate the effectiveness of End-Points
RS based on our data sets. For ease of exposition, we will
focus on the Madrid metropolitan area (we cover the remain-
ing cities in a later section). We reduce the size of our data
set by randomly selecting only 60% of the users. We do that
to capture the fact that only 60% of the population has a car
in the area of Madrid [24]. We also show results for the case
that half of the car owners use their car at their daily commute
(the results are quantitatively similar). For the remaining of

the section, we will refer to users who can share rides with a
specific user v, as options of v. We compute the reduction of
cars, as % of the initial number:

success =
#(init. cars)− #(ride-sharing cars)

#(init. cars)
· 100

using the following algorithms:

Loose upper bound: Given our definition of success, we can-
not do better than 75%, when all cars carry 4 people.

Tighter upper bound: Assuming that all users with at least
one ride-sharing option commute in cars of 4.

Time-indifferent matching (τ = ∞): This is the practical al-
gorithm described in the previous section.

Time-aware matching: This is the version of the algorithm
that considers timing constraints under the assumption of nor-
mally distributed departure times.

Uniform home/work: Ride-sharing assuming that home/work
locations are distributed uniformly.

Fig. 10 presents what happens when the users are willing to
tolerate a detour of δ km and deviate τ minutes from their
departure times, in order to share the same car with another
individual. The results show that with a modest delay toler-
ance of 10 minutes and a detour distance of 1.0 km (a couple
of city blocks) more than 20% of the cars can be saved. The
success ration improves when δ or τ increase. The diminish-
ing improvement with increasing δ can be explained by the
number users’ options, given the distance δ. In Fig. 11, the red
color represents the users with no options, the blue color the
users with 1 or 2 options, and the green color the users with
3 or more options. We see that the success of ride-sharing is
proportional to the number of users with 3 or more options.

Fig. 10 also shows that the potential of End-Points RS
is quite small in the case of uniformly distributed home/work
locations; note that no time constraints were applied in this
case. If we apply time constrains too, then the success of
End-Points RS is even smaller, e.g. for δ = 1 km, τ = 10
min, and σ = 30 min, its potential becomes 0.2%

EN-ROUTE RIDE-SHARING
The effectiveness of ride-sharing can be greatly improved by
picking up additional passengers en-route; a driver that lives
in a sparsely populated area might not have any neighbors
to fill her seats, but once she enters the city she can pick
several passengers that are on her way. In order to quantify
the benefits of en-route ride-sharing we obtain routes from a
popular Online Map service for the 272K users with inferred
home/work locations, and we extend the algorithm of the pre-
vious section. Again, we will focus on Madrid.

En-Route Algorithm
We use an iterative algorithm with the following steps:

1. Run the basic End-Points RS algorithm.

2. Exclude from the solution cars that get fully packed (a car
of 4). Then order cars in decreasing order of passengers
and start “routing” them across the urban environment (e.g.
Madrid) using data from the Online Map service.
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Figure 13. Extrapolation to commuters’ size. “Sample" refers to the
272K users with inferred home/work locations in Madrid. The solid lines
correspond to values generated from our data set, while the dashed lines
correspond to values generated through extrapolation.

3. When the currently routed car v meets a yet un-routed car
v′, then v is allowed to steal passengers from v′ as long as
it has more passengers than v′ (a rich-get-richer strategy).
Whenever a routed car gets fully packed it is removed from
further consideration. Whenever a car with a single passen-
ger is encountered the number of cars is reduced by one.

4. The algorithm finishes when no change occurs.

These steps are repeated until there is no possible improve-
ment. The rich-get-richer rule leads to convergence, since it
forces cars to either become full or to stay home (the driver
becomes a passenger in another car). The algorithm con-
verged in every single execution.

Results
Fig. 12 shows the performance of En-Route RS. To make
the comparison with End-Points RS easier we summa-
rize our results in Tab. 3. One can see the significant im-
provement obtained through En-Route RS, which in sev-
eral cases comes within 10% of the optimal performance.

Projection to the entire commute population: All previous re-
sults have been produced based on the 272K users with in-
ferred home/work location in Madrid. This, however, repre-

Sample δ τ σ End-Points RS En-Route RS
(%) (km) (min) (min) (%) (%)
30 1.0 – – 54 65
30 1.0 10 30 17 47
60 1.0 – – 59 70
60 1.0 10 30 24 53
100 1.0 – – 62 71
100 1.0 10 30 30 56
360 1.0 – – 70 75
360 1.0 10 30 44 65

Table 3. Effect of population size on the performance of End-Points
RS and En-Route RS in Madrid. “Sample" refers to the 272K users
with inferred home/work locations in Madrid. 100% means using all of
them. 30% and 60% means using a random subsets, while 360% means
projecting the potential to the entire commuters’ population of Madrid.

Graph Nodes Edges Mean
degree

Median
degree

# #
call graph Madrid 4M 21M 6.0 1
twitter graph NY 132K 725K 10.95 5

Table 4. Graph sizes

city filter End-Points RS En-Route RS En-Route RS
extrapolation

(%) (%) (%)
Madrid no filter 30 56 65
Madrid 1-hop 0.26 1.1 –
Madrid 2-hop 3.7 19 31
NY no filter 20 44 68
NY 1-hop 0.18 1.2 –
NY 2-hop 2.1 8.2 26

Table 5. Social Filtering. The potential or End-Points RS and
En-Route RS for δ = 1.0 km (distance constr.), τ=10, σ = 30 (time
constr.). The third and the forth column show the potential for sample
size, while the last column shows the potential of ride-sharing extrapo-
lated to the commuters’ population.

sents only roughly 8% of the total population of the city. To
get a feeling of the ride-sharing potential based on the en-
tire population, for which we do not have location informa-
tion, we extrapolate to a larger number of users. We repeat the
calculation of ride-sharing with different subsets of our total
272K users, and fit numerically these data points to a logarith-
mic function (in order to capture the diminishing effect). Then
we extrapolate the potential of ride-sharing for larger popula-
tion sizes. The results are summarized in Tab. 3 and shown in
Fig. 13, where we see that the population size has a progres-
sively diminishing results on the ride-sharing potential. In the
remainder of the paper we will report results for both our 8%
sample, and extrapolation to the commuters’ population.

SOCIAL FILTERING - RIDING WITH FRIENDS OF FRIENDS
In this section, we present how social filtering affects the po-
tential of ride-sharing. Instead of assuming that anybody is
willing to share a ride with anybody else, we introduce so-
cial constraints in selecting ride-sharing partners. The social
constraints are represented by graphs, e.g. as shown in Fig.
15: the nodes correspond to users, and the edges correspond
to social ties. A user considers sharing a ride with a one-hop
neighbor, or with a two-hop neighbor (a friend of a friend).

Given that we have two different types of data sets – CDR
and geo-tagged tweets – we need to use two different defini-
tions of edges. In the case of CDR data [25] [26], choosing
a threshold condition for an edge between two users involves
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Figure 15. Number of friends for the users with home and work address.

a trade-off between the strength of the tie and the number of
edges. When choosing a threshold one needs to take into ac-
count the needs of the application [27]. In this study, we cre-
ate an edge in the social graph between two users when there
is at least one call between them. We experimented with var-
ious definitions, and we found that – due to the small number
of users with inferred home/work locations – higher thresh-
olds would result in extremely sparse, thus useless,2 graphs.

In the case of Twitter, we crawl the friends and the followers
of the users for with inferred home/work locations, and we
create an edge in the social graphs if there is a bidirectional
edge on Twitter. See Tab. 4 for graph details. Moreover, to
be sure that the friend nodes in our Twitter graph represent
real people we considered only users who had at least one
geo-tagged tweet. Finally, in both CDR and Twitter cases, we
filtered out nodes with more than 1000 friends, in order to
exclude popular phone services, or celebrities, respectively.

Now, we examine how social filtering affects the potential
of ride-sharing. Fig. 14 illustrates the social filtering process.
Lets start with Madrid. As we can see from Tab. 5 the po-
tential of ride-sharing is quite low when users are willing to
share a ride only with their one-hop friends. This is expected,
since the graph shows only a small portion of a user’s friends,
and the users for whom we have home/work addresses are
only a small subset of all users. From Fig. 15(a), we can see

2Using a reciprocal call, as a threshold, would result in a graph with
2.4M nodes, and 3.7M edges. In that case, 92% of the users had
zero one-hop neighbors with whom they could share a ride. As a
result, the ride-sharing potential was 2% (5.1% with extrapolation)
for En-Route RS with 2-hop social filter, and δ = 1.0 km (dist.
constr.), τ=10, σ = 30 (time constr.)
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Figure 16. The CDF of the ratio between average number of friends-
of-friends over number of friends. Friendship paradox holds when this
ratio is greater than one (over 90% of the users both in figures).

scenarios End-Points RS ratio. En-Route RS ratio.
(%) (%)

τ=10, σ = 30 3.3 1.8
Social constr. 68 14

Table 6. Madrid vs. BCN. This table shows the difference in ride-sharing
potential between BCN and Madrid, for both End-Points RS and
En-Route RS, in two different scenarios : (1) δ = 1.0 km, τ=10, and
σ= 30, and (2) δ = 1.0 km, τ=10, σ= 30, and two-hop friends. The ratio
is computed as : ((BCN −Madrid)/Madrid) ∗ 100

scenarios End-Points RS ratio. En-Route RS ratio.
(%) (%)

τ=10, σ = 30 -33 -9
Social constr. -50 -46

Table 7. NY vs. LA. This table shows the difference in ride-sharing po-
tential between New York and Los Angeles, for both End-Points RS
and En-Route RS, in two different scenarios : (1) δ = 1.0 km, τ=10,
and σ=30, and (2) δ = 1.0 km, τ=10, σ= 30, and two-hop friends. The
ratio is computed as: ((LA−NY )/NY ) ∗ 100

that 80% of the nodes in the call graph have no more than 10
one-hop friends, whose home/work addresses have been iden-
tified. However, if users are willing to share rides with friends
of friends, then from Tab. 5 we can see that, even with a sparse
social graph, there can be considerable gain from En-Route
RS. This can be explained from Fig. 15(a), in which we can
see the much higher number of two-hop than one-hop friends.
In all data sets, there is a considerable improvement; e.g., in
Madrid, ride-sharing has a potential of 19% (or 31% if ex-
trapolated to the entire population of Madrid).

In general, the number of nodes and edges in the social graph
is crucial for any ride sharing application that wants to exploit
social filtering. Moreover, the difference between the large
increase in the ride-sharing potential when using friend-of-
friends can be attributed to the friendship paradox ( “on aver-
age your friends have more friends that you do”, [28, 29] that
also holds in our data sets as illustrated in Fig. 16.

A TALE OF FOUR CITIES
In this section, we compare the potential of ride-sharing in
the four cities (Madrid, BCN, NY, and LA).

We start by comparing Madrid and BCN. The first row of
Tab. 6 shows that, for spatio-temporal constraints only, the
potential or ride-sharing in the two cities is very similar,
with the potential of En-Route RS being slightly higher in
BCN. In the second row, we show that when also considering
social constraints, the relative difference in ride-sharing bene-
fit between the two cities becomes becomes much higher: the
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Figure 17. Comparing the CDF of 2-hop friends for Madrid vs.
Barcelona, and NY vs. LA.

potential of End-Points RS in BCN is 68% higher, and
the potential of En-Route RS in BCN is 14% higher. This
difference cannot be explained by the social graph, since, as
we can see from Fig. 17(a), the users in both cities have al-
most the same number of friends. We attribute the better po-
tential in BCN to its higher population density: Madrid has
a density of 5,390 people/km2, while BCN has a density of
15,926 people/km2.

The same observation holds in the comparison between the
two US cities. The potential or ride-sharing in NY is higher
that the potential of ride-sharing in LA – see Tab. 7. The dif-
ference gets even higher when time or social constraints are
included – see Tab. 7. Again, the difference in the potential
of ride-sharing can be explained by the densities of the two
cities: LA has a density of 3,124 people/km2, and NY has a
density of 10,429 people/km2.

We obtained the mobility data for Madrid and BCN from
CDRs, and we obtained the mobility data for NY and LA
from geo-tagged tweets, therefore a comparison between Eu-
ropean and US cities may lead to incorrect conclusions. How-
ever, both comparisons (Madrid vs. BCN and NY vs. LA)
show that ride-sharing is more beneficial in denser cities, es-
pecially when time and social constraints are considered.

SUMMARY AND CONCLUSION
We used mobile and social data to demonstrate that there is
significant overlap in people’s commute in a city, which in-
dicates a high potential benefit from ride-sharing systems.
This is clearly an upper bound to any practical ride-sharing
system, but the positive result motivates the deployment of
such systems and policies. Our results indicate that en-route
ride-sharing with up to two-hop social contacts offers a good
trade-off between technological feasibility, people’s security
concerns, and a substantial impact on traffic reduction. A
more detailed summary of our findings is as follows.

We started by considering End-Points RS in which rides
can be shared only with neighbors with nearby home and
work. Even with a modest detour of 1 km we observed a
great potential reduction of cars. In the case of Madrid, this
reduction is 59%, based on our location data set that captures
close to 8% percent of the total population. Our estimation of
the ride-sharing potential extrapolated to the total commut-
ing population of the city is significantly higher. The distri-
bution of home/work locations, which is far from uniform is
crucial to the success of ride-sharing: if Madrid had a uni-
form home and work distribution then the reduction would be

13% assuming only spatial constraints, and 0.2% assuming
time constraints too. This is in agreement with [4] and shows
that ride-sharing has negligible benefit in a city with uniform
home/work distribution.

Adding time constraints, the effectiveness of ride-sharing be-
comes proportional to the driver/passenger waiting time for a
pick-up, and inversely proportional to the standard deviation
of the distribution of departure times. With a standard devia-
tion of 30 min, a wait time up to 10 min and a δ of 1km there
is a 24% reduction of cars in Madrid.

En-Route RS, i.e., allowing passenger to be picked up
along the way, yields a great boost in ride-sharing poten-
tial with or without time constraints. In the case of Madrid,
En-Route RS increases the savings from 24% to 53%.

Then, since people are often hesitant to ride with strangers,
we decided do add social constrains too. Social ties can be
inferred from calls (CDRs), or declared friendship (Twitter).
First, we consider ride-sharing only with one-hop friends.
Then En-Route RS in the city of Madrid using CDR and
Twitter friendship provides only a tiny traffic reduction of
1.1% and 1.2% respectively. This dramatic decrease is at-
tributed to the low density of the social graphs and to the fact
that only a small portion of the graphs’ nodes have known
home/work addresses – each user has the opportunity to share
a ride only with a small portion of her neighbors. However, if
we relax the social constraints and permit ride-sharing with
friends-of-friends, the ride-sharing potential increases sig-
nificantly, especially in En-Route RS. The corresponding
numbers are 19% and 8.2% for friendship based on CDRs
and Twitter data, respectively. Furthermore, if we project the
potential of ride-sharing to the total commuting population of
the city (much larger than the number of users with inferred
home/work locations), the benefit increases up to 31% for call
based filtering and 26% for OSN based filtering.

Finally, we compared the four cities and observed that the
population density of a city has a profound effect on its ride-
sharing potential, especially when strict social filtering is ap-
plied. For example, BCN is denser and has a 14% higher
ride-sharing potential than Madrid; LA, on the other hand,
has 46% lower ride-sharing potential than NY.

Directions for future work include designing real-time match-
ing algorithms (motivated by the offline analysis in this pa-
per) and implementing a prototype ride-sharing system. The
methodology developed in this paper can potentially be used
on other cities and different data sets to assess the potential of
ride-sharing and guide related deployment and policies.
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