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Abstract - Rule-Driven processing has been proven to 
be a way of achieving high speed in fuzzy processing. Up 
to now, Rule-Driven architectures where designed to 
work with MIN or PROD as T-norm because they were 
the most commonly used in applications. This paper 
proposes a new Rule-Driven model valid for any T-norm 
(programmable T-norm) and any kind of membership 
functions (MF), provided the overlap factor is two, and 
they are a fuzzy partition. The architecture proposed can 
be implemented either by hardware or software. 

I. INTRODUCTION 

The need to process Fuzzy Knowledge base systems with 
high speed resulted in the development of fuzzy hardware 
architectures. Two ways of achieving high speed are using 
paralelism and pipeline processing, concepts developed in 
computer architecture. Another option is to use Rule-Driven 
processing. In that case only the rules relevant to the final 
result are executed, which produces very high speed fuzzy 
processors [4], because the set of the relevant rules is only a 
small part of the complete Fuzzy Knowledge Base. 
Ikeda [7] developed one of the first rule-driven architectures. 
Other Authors, like [l], [2], [3] and [6], have developed 
fuzzy rule-driven processors, but all of them were designed 
for a MIN T-norm. The design of a rule-driven architecture 
depends on the T-norm used by the system, because it (with 
the T-conorm if necessary) determines if a rule is relevant or 
not by calculating the degree of truth of the antecedent. 

II. BASIC CONCEPTS 

A Fuzzy System, FS, is defined as a vector, 
FS=(T,T,M, OP, OA, D,R,MF, I, 0), with T,, the T-norm, Tc 
the T-conorm, M the set of modifiers, OP the propagation 
operator, OA the aggregation operator, D the deffuzification 
algorithm, R the set of Rules , MF the membership functions 
defined as a fuzzy partition [Kli88] and overlapping of two, 
I the inputs and 0 the outputs of the system [Fri99]. For the 
rest of the paper we will consider a system with Card(I)=2. 
For I ;  E I, the Activation Intervals of I ;  (AIi) are defined as 
the union of the set of intervals given by the supports of the 
membership functions defined in I .  Seefig. I .  
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Fig. 1 Activation Intervals of I1. 

Given AIi, i=l ... Card(I), where Card(I) gives the cardinality 
of I, and S the N-dimensional input space given by l,,..,ln , P 
is defined as a partition of S, given by the Cartesian product 
( X )  ofAIi i=l ... Card(I), 

P =  X AIi 
i=l ... Card ( I )  

A rule Ri is defined as: 

I f I ,  Is MFlj and I2 is MFzi Then 0 is MF, [2] 

Pi is defined by (IAli; IA,, ..., IAw) . It will be said that a 
rule Ri E R is included in a partition Pi E P if and only i f  

Ri c Pj c3 V M F g  of Ri verifies MFg n IAij.#O [3] 

A rule will be part of a partition if and only if every 
membership function of the rule is in the AI of the 
correspondent dimension of Pj. 
CR is defined as the classification of the set of rules R in the 
partition P using [3]. 
The Activation Area of a rule R;, in a partition Pi, AA(R;, Pi) 
is defined as the area of Pj, where the inputs of the system 
make the rule relevant to the output. 
Given a rule Ri defined by MFli and MFzi’ as in [2], R; E Pi 
and defining the inequalities {Fl, F,, F3] as the regions that 
mark the area where T,, is sensible (with a value greater that 
0), the Activation Area, AA(RL Pj),  is given by the union of 
the following areas: 

Fl(X, Y )  2 0 
F2(X, Y )  2 0 
Fj(X, Y )  2 0 

Where X=MFl;, and Y= MF2i. . 
The Activation Area of a rule Ri in the input space defined 
by I ,  S, is the addition of the Activation Areas of Ri in all 
the partitions of P. 

AA(R ;) = ZAA(R,Pi)  j= l . .Card(P)  

III. ACTIVATION AREA OF GENERIC T-NORM 

The model presented in this paper is designed to work with a 
generic T-norm, so the only information available about the 
T-norm is the one given by its definition [SI: 

T:[O,l lx[O,1]  + [ O , l l  
Satisfying: 

T(0,O) = 0; T(a,I)  =T( l ,a)  =a 
T(a,b) I T ( c , d )  Si a& y b ld  (monotony) 
T(a,b) = T (b,a)  
T(a, T(b, c)) = T(T(a, b), c )  

(boundaries) 

(commutativity) 
(asociativity) 
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With this information the general appearance of the 
Activation Area of a rule Ri E R in the input space can be 
sketched. The Activation Area (AA) of a rule is divided in 
two parts, AAI which represents the part of the Activation 
Area where one of the inputs is 1, and AAM, which 
represents the part of the Activation Area where none of the 
inputs are 1, as seen in (3). 

The key of the representation is T(a,l)=T(l,a)=a, which 
produces the area marked with 0 infig. 2. This area is the 
part of the Activation Area given by AAl. The striped area is 
where the T-norm is calculated for the rest of the cases, and 
in that case the representation will depend on the 
mathematical definition of the T-norm. This part of the 
Activation Area is the part given by AAM. Only a part of the 
striped area will be AAw. The maximum value of AAw will 
be the complete striped area, and the minimum value 0, in 
that case AA will be the cross given by AAl. 

Fig.2 Activation Area for a generic T-norm. 

Fig. 4 represents the Activation Area of the rules given in 
Fig. 3 for a generic T-norm, this example will be used later 
in the model. 

RI : If Il  Is MFll And l2 Is MFZl Then Z I s  SI 
R 2 :  I f  1, IsMFI2 And I2 I S M F ? ~  Then Z I s S 2  
R3: If I ,  I sMFII  And I2 I s M F ~ ~  Then Z I s S 3  
R4:  I f  I ,  I sMFI2 And I,  I s M F ~ ~  Then Z l s  S4 

IV. SENSIBLE AREAS OF THE INPUT SPACE 

The concept of Sensible Area (SA) is the key concept of the 
model. A Sensible Area of the input space, is defined as the 
area where a set of active rules is executed (4). 

Sensible Areas are obtained from the intersection of 
Activation Areas. Fig. 5 represents the Sensible Areas of a 
system with a generic T-norm, and the set of active rules that 
define them, where SA8={RI, R2, R3, R4} .  A similar concept 
has already been calculated in the previous step, for 
calculating the Activation Areas. CR, the classification of R 
in P ,  contains very similar information, but with a different 
semantic. In this case the area given by (x ,y)  is associated to 
a set of rules, in CR, the rules are associated to a partition P .  

Fig. 5 Sensible Areas of the knowledge base. 

The general appearance of the sensible areas of a two-input 
system with trapezoidal Membership Function and a 
programmable T-norm is given in Fig. 6. This partition is 
the same for any of the considered membership functions. 

Fig, 3. Fuzzy Knowledge Base. 

Fig. 6 Sensible Areas of the input space. 

_l_l a There are four different types of Sensible Areas(SA): 
HF2I W R I )  m ( R )  

0 SA marked with 0 have only one rule associated (the 

0 SA marked with @and 0 have two rules associated. 
0 SA marked with @ have four rules associated. 

MF22 HF22 rule constructed with the related membership functions) 

The reason for naming the model Pseudo Rule-Driven 
comes from having four rules associated with @. These four 
rules associated are not always relevant. As the model deals 

Fig. 4 Activation Areas of Fig.3 
with a programmable T-norm, there is no way of identifying 
the active ones. Furthermore, in the case that the model had 
information about the T-norm, it could be that the 
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mechanism for identifying the relevant rules would consume 
more time than executing the rules. 

V. IDENTIFICATION OF THE SENSIBLE AREAS 

In order to determine the relevant rules, a mechanism to map 
the inputs of the system to the Sensible Areas is needed. The 
solution proposed by the model consists of the equalization 
of the input membership functions (with overlap of two and 
partition of unity), so that the system works with a 
predetermined set of known Membership Functions. The 
equalization [5] is done by the function N(x} (5). This 
function is the same for any normalized Membership 
Functions. 

N(x) = M F I ~ ( x )  *O+MFI~(X) *Z +MFI~(x)  *2+MF14(X)*3 ( 5 )  

The equalized membership functions are fuzzy partition 
triangles with overlap of two and range between 
[O.. . Card(MF}]. An example of the equalization done for an 
input with trapezoidal MF is given in Fig. 7. 

Fig.7 Example of equalization done by N(x}. 

As a consequence of the Membership Functions having been 
equalized, the input space of the system is equalized also. 
Fig. 8 presents the equalization of the system presented in 
fig. 6. Basically, all the constant parts of the Membership 
Functions disappear, so only the Sensible Areas marked with 
@ remain in the equalized input space. 

Fig. 8 Equalized input space. 

Working in the equalized space makes identification of the 
Sensible Areas much easier. Defining the vector Z’=(Z’J’2} 

as the equalization of the input vector Z=(Z&: 

0 If Z’ is in 0, ZJ I  and Z’2 will be integer, and the 
associated rule will be given by (Z’J’2). 

0 If Z’ is in 0, Z J I  is integer and is non-integer. The set 
of two rules associated will be given by (IJ,, integer(ZJ2)) 

0 IfZ’ is in 0, Z’, is non-integer and Z’2 is integer. The set 
of two rules associated will be given by (integer(Z’I),Z’2). 

If Z’ is in @, both I ’ I  and are non-integers. The four 
rules associated will be given by (integer(Z’I), 
integer(ZJ2)) 

Each one of the pointers to the active rules is not only 
identified by a pair of integers, but also by the kind of area 
where the non equalized input is in. 

VI. ARCHITECTURE OF THE MODEL 

The modules of the proposed architecture canbe seen infig. 
9. The architecture presented refers only to the Rule-Driven 
system. Once the active rules have been identified, the fuzzy 
inference system will execute the rules. The Rule-Driven 
architecture proposed is independent from the architecture of 
the inference system, as seen in Fig.10 

Pouter 

Fig. 9 Architecture of the Rule-Driven model. 

System 

Active Rules 
Input 

Fig. 10 Interface with the Inference System. 

Once an input Z has been equalized, the system will detect 
which of the conditions has been met. Once it is found, a list 
with pointers to the different active rules is obtained. From 
these pointers, the Active Rules are read from the Rule Base 
and executed. 
The key of the Architecture is the “Detection of the Set of 
Active Rules” module. This module from the equalized 
input (Z’I,Z’2) produces a set of pointers to the relevant rules 
which are used as inputs to the Rule Base. The algorithm to 
the detect the set of pointers is given in Fig. I 1  

function ACTIVE-RULES (X’1,Y’l) 
X’1,Y’I : EQUALIZED-INPUTS 
( 

if ( X’1 is INTEGER) 
if (Y’l is INTEGER) return RULE-I[X’I,Y’I] 
else retum RULE-2[X’l,integer(Y’I)] 

if (Y’l is INTEGER) return Rule-3[integer(X’l),Y’l] 
else retum Rule-4[integer(X’l),integer(Y’l)] 

else 

1 

Fig. 11 Algorithm of detection of Sensible Areas 
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The data structure needed for the algorithm is given in Fig. 
12. All these structures are generated off-line. 

#define X NUMBER-OF-MF-OF-I1 
#define Y NUMBER-OF-MF-OF-I2 
array RULE-l[X][Y] of RULE-POINTER 
array RULE-2[X][Y-l] of array RULE_POINTER[2] 
array RULE_3[X-l][Y-l] of array RULE_POINTER[2] 
array RULE-4[X-l][Y-l] of array RULE-POINTER[4] 

b a a b 

C C C 

Fig.13 Typical structure of MF. 

The amount of time saved for a two input system with four 
MF per input is given by : 

Time Saved = 100 - 6.25 (PI+2P2+2P3+4P4) (8) 
Fig.12 Data structures for Active Rule detection. 

VII. RULE-DRIVEN ARCHITECTURE VS. NON 
RULE DRIVEN ARCHITECTURE 

The comparative of both solutions is done in terms of 
memory needed and execution time. 

Memory Comparison 
A non Rule-Driven solution will need only the Rule 
Memory. A Rule-Driven solution, in addition to the Rule 
Memory, needs the structures of Fig. 12. The total amount 
of memory in bytes is given by: 

Num. of Bytes = XY + 2 X(Y-I)  + 2 (X-I) Y + 
4 (X- l ) (Y-I )  * B bytes/pointer (6) 

where X is the number of membership functions of I1 and Y 
of I,. In the example provided by jig. 3, X=4, Y=4, which 
gives a total of 100 pointers, and with 4 bytedpointer gives a 
total of 400 bytes more than the non-Rule Driven solution. 
This result is without adding the memory needed to code the 
"Detection of the Set of Active Rules" module. 

Execution-time Comparison 
The execution time for a Non Rule-Drive 2-Input system 
with 4 MF per input is 16*K, where K is the execution time 
of a Rule. 
In the case of the Rule-Driven architecture proposed, given 
an equal probability for the 2 inputs of the system to have 
any value of the input space, and a typical set of membership 
functions given in fig. 13, the probability of the input I to 
active the rule set of each kind of Sensible Area is: 

4a2+4b2+8ab 
( 2 ~ + 2 b + 3 c ) ~  
6bc+6uc 

(2a+2b+3c)2 

ForO: PI= 

ForO: Pz= 

ForO: P3 = P2 
9c2 

( 2 ~ + 2 b + 3 c ) ~  For@: P4= 

With these probabilities, the time of execution of the model 
is given by: 

T = (P,+ZP2+2P3+4P4) K (7) 

For example in a system with a=2, b=1.5, c = l ,  the time 
saved by the rule-driven system will be near 90%. With 
these benefits, the increase of the memory needed by the 
rule-driven model is justified. 

VIII. CONCLUSIONS AND FUTURE WORK. 

This paper presents a Rule-Driven architecture for a 
programmable T-norm and any kind of membership 
functions provided an overlap factor of two and that they are 
defined as a fuzzy partition. The results obtained for a 
typical two-input fuzzy system produces a time savings of 
up to 90%. This makes the model proposed completely 
worth while. The architecture can be implemented both in 
hardware and in software. 
This model is a first step towards designing a full 
programmable high speed fuzzy controller. 
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