A Pluggable Architecture for Building User
Models From Massive Datasets

Heath Hohwald, Enrique Frias-Martinez, and Nuria Oliver

Data Mining and User Modeling Group
Telefonica Research, Madrid, Spain
{heath,efm,nuriao}@tid.es

Abstract. In many situations, it is common that a large single source of
data serves as input to multiple application areas, each of which may use
a different user model. It is often the case that each user model is assem-
bled using a different process, however, in general, it is more efficient to
have a single architecture for building different user models for different
application areas. We propose an architecture based on MapReduce that
allows for processing terabytes of information in a timely fashion using
pluggable components, each one capable of including different features in
the final user model. A metamodel is used for specifying the characteris-
tics of the desired user model, which can include a short-term user model
and a long-term user model, and the architecture is responsible for build-
ing it from the specified data and pluggable components. We present an
instantiation of the architecture for telecommunication (telco) applica-
tions and evaluate how the architecture escalates with a real dataset.
Our evaluation indicates that complex user models for millions of users
can be obtained in a timely fashion.

1 Introduction

User Modeling (UM)is an ad-hoc process in which the dimensions that define
each user model are built considering the application and the data available.
Nevertheless, the ad-hoc nature of the process does not imply that the architec-
ture used to generate UMs has to be ad-hoc as well. On the contrary, the different
dimensions that compose a UM can be processed, from an architectural point of
view, using the same concepts. A user model is a set of information structures
designed to represent one or more of the following elements [11]: (1) representa-
tion of assumptions about preferences and/or abilities about one or more types
of users; (2) representation of relevant common characteristics of users (stereo-
types); (3) the classification of a user in one or more of these stereotypes; and /or
(4) the formation of assumptions about the user based on the interaction his-
tory. For all four cases, a user model is typically represented as a vector, where
each dimension represents an element that provides valuable information for per-
sonalization and/or prediction. Although this vector is not necessarily the end
product of the modeling process (for example, the result can be just a number
indicating in which stereotype a user is included) at some point of the process a
vectorial representation of the characteristics of each user will be used.

The construction of a vector for user modeling can be carried out using a
user-guided (or adaptable) approach [7] or an automatic (or adaptive) approach
[7] . The adaptive approach implies the processing of massive amounts of data
using typically statistical or data mining techniques in order to construct the
final model. This fact implies that UM is a computational intensive task due
to (1) the number of users that have to be modeled (especially in commercial
environments); (2) the complexity of the process of generating each user model
and (3) the need for some applications to generate a short-term and a long-
term user model. The need for an architecture that is able to efficiently process
and generate UMs also arises from the application side. There are a variety of
applications that require UM to be regenerated frequently and with strict time
constraints (churn prediction [4], fraud detection [9], real-time recommendation,
etc.) in order to capture variations in behavior. In this context, one of the key
challenges in UM is the ability to generate millions of UMs from tera-bytes of
information in a timely fashion.

Until now, the literature in UM has not focused much attention on architec-
tures for UM that solve the previous limitations mainly because: (1) the data
available was limited, (2) the number of users was also limited and (3) the appli-
cations presented did not have demanding time constraints. Nevertheless, with
the increasing availability of individual information in a variety of environments
such as the Web, telecommunications (telco), medical, etc., a platform that can
generate massive and complex user models in a timely fashion is becoming in-
creasingly needed. For example, in the telecommunication environment, gener-
ating daily user models for 20 million individuals from the information stored
during several months of activity would be considered a medium sized problem.

In this paper we present an architecture for user modeling, based primarily
on the MapReduce paradigm, that tackles the previous problems. The proposed
architecture: (1) generates user models (independently of the data available,
complexity of the model, and the number of user models to generate) in a timely
fashion; (2) has the capability of generating at the same time short and long
term user models (if needed) and (3) is pluggable in the sense that the process
used for generating values for each dimension that comprises the user model
vector can be plugged from an existing library. The proposed architecture is
independent from the application environment or specific applications and can
be used in a variety of typical UM environments such as web user modeling,
telecommunication user modeling, student modeling, etc.

The rest of the paper is organized as follows: first we describe related work
(Section 2) and after that a description of the architecture is given in Section 3.
Section 4 presents an instantiation of the architecture for telco applications, and
Section 5 evaluates the performance characteristics of the model using a large
data set.

2 Related Work

In the literature of UM the concepts of architecture for UM as referred in this
paper are usually included as a part of servers for UMJ[5][3]. Servers for UM
include two major functionalities: (1) serve as a central repository of informa-
tion of a user and (2) contain the functionality to transform raw data about
users into user models. We are concern with the second part of the functionality.
AHA! [5] is a good example of a server for user modeling specifically designed for
learning environments and for user modeling on-the-fly. It does not only provide
the framework for UM but also includes mechanisms for content adaptation.
CUMULATE [3] is another example of UM server that uses a distributed ar-
chitecture. The work presented in this paper focusses on generating UMs from
huge amounts of data in a timely fashion. It can not be considered a UM server
because it is not concerned with delivering and using the UM. Nevertheless it
can can be part of a generic UM server.

The most related work to our research is in the field of data mining and web
mining frameworks[14], some of them also focussing on high performance [8].
Nevertheless, in general, these frameworks are not focussed on user modeling. In
this context [12] presents a model called WIM (Web Information Mining) for web
mining prototyping, that provides a model an an algebra to express web mining
tasks. The work we present is similar in the sense that it is generic, but while [12]
focuses mainly on the algebra, we focus mainly on the processing capabilities.
Our architecture can also be instantiated to generate web user models as it will
be shown.

Note that the approach we take with our proposed architecture is very dif-
ferent from updating UM on-the-fly when new information arrives, as done in
AHA! [5]. Such an approach requires a much more complex data representation
and has to be built using ad-hoc architectures. Also, when short term and long
term models are being generated, the advantages of having on-the-fly UMs dis-
appears as all models have to be updated when time goes by, independently of
the activity of each user. In our approach, we use the advances in platforms and
methods for data-intensive distributed computing processing for efficient UM
generation.

3 Architecture for Terabyte-Scale User Modeling

The architecture, as presented in Figure 1a, has four main components: (1) the
Data available to generate UMs; (2) a User Metamodel that describes the com-
ponents of the long term (LT) and short term (ST) UMs ; (3) a UM Library that
contains the most common functions used to generate UMs and (4) a terabyte
scale UM generator that instantiates the architecture and generates the set of
UMs from the information contained in the metamodel using the library. The
output of the architecture is the set of UMs for the users selected.

ParFor
ParFori=I.. M
Launch{.S7-UM %)
EndFor
Wait(ST-UAL) i=1.. M
Aggegate (ST-UM,)

M Generator

User Model

Files ParFori=I/.. N
Launch{Z7-UM;)
EndFor
- Wait(LT-UM) i=1..N

Aggegate (LT-UM,;)

UM Library EnfFor

(a) Architecture (b) Pseudocode

Fig. 1: Architecture and Pseudocode for the UM Generator

3.1 Data Input & Output

The data available to generate the UMs can be a single file containing all the logs
or a set of files. It is very common that the logs collected are stored using some
time considerations, for example one file of activities is generated for each month
or each day. The output of the architecture can be presented and managed as
a single file, but typically it will be a set of files along with a lookup table that
indicates for each user the file that contains the associated user model. This
fact is related with implementation and will be detailed in the corresponding
subsection. Typically the files will be stored in a distributed file system, for
example the Hadoop Distributed File System [2].

3.2 User Metamodel

The metamodel is a file that contains all the parameters that describe the UM
that is to be generated. The use of a metamodel allows the architecture to factor
out commonality across several application areas that use the same parameters
or dimensions. It also allows for the easy use of pluggable components. The meta-
model represents a very high level abstraction and is very useful for separating
user-modeling code from actual model construction, thus allowing for models to
be built without detailed knowledge of the data layout or the distributed progam-
ming code underlying the architecture. The metamodel contains the following
parameters:

1. INPUT is a pointer to the files/directory that contain the data to be pro-
cessed. Typically each file will contain the activity logs for a given period
of time. Each entry in the file will have an indication of a user and some
activity of that user in a specific moment in time.

2. LT,, LT,, ST,, and ST, indicate the start and end times to be considered
to generate the Long Term (LT) and the Short Term (ST) models. Only one

of the temporal models can be generated. For example, only a short term
model is generated if LTy = LT,.

3. LT-UM is a vector (LT — UMy, -+, LT — UMy) indicating the parameters
that define the long term user model. Each dimension of the vector indicates
some knowledge obtained from the information of that user in the data
pointed by INPUT. The processes for generating these dimensions for a
given context, i.e. telecommunications applications or web mining, can be,
for the best part, standardized and are included in the UM Library.

4. ST-UM is a vector (ST — UM, -+, ST — UM),) indicating the parameters
that define the short term user model. Note that LT-UM and ST-UM can be
different and can have a different number of dimensions. Often they share
many dimensions in order to measure significant recent deviations in ST-UM
from LT-UM, but the short term model may include dimensions that only
have significance over a short term period.

5. FILTERS indicates conditions that the user activity must meet in order
to generate a corresponding user model. One common condition used for
filtering is ensuring some minimum level of user activity, thus user models
are only built for users that are reasonably active.

6. NEW-PARAMETER, contain one or more indications of what process to
use to generate a dimension of either the LT-UM or ST-UM for the case
where the library does not already contain the necessary process.

3.3 UM Library

The UM library contains the functions to calculate the dimensions specified in
the LT-UM and ST-UM. Although in general each dimension will be the output
of some function, it can happen that different dimensions are produced by the
same function, i.e. a function can produce more that one output, and all or only
part of them are needed by the specification of LT-UM or ST-UM. For a given
context, the UM Library will contain the typical elements that user models use
in that environment. For example in web mining there can be a function to
identify the number of visits of a user to a webpage or the number of times
that a specific element of the interface has been used. In a telecommunication
environment a function might calculate the total talk time for a given subscriber,
the total number of phone calls made or received by a subscriber, or the number
of individuals in a subscriber’s social network. Note that new elements can be
dynamically added to the Library using the NEW-PARAMETER element of the
User Metamodel.

3.4 Terabyte-Scale UM Generator

The UM Generator applies the User Metamodel to the Data and produces the
User Models using the necessary elements of the UM Library as well as any NEW-
PARAMETERs. The Generator matches each one of the elements of ST-UM and
LT-UM to the corresponding functions of the UM Library with a lookup table.
If the function is not available it must be provided by NEW-PARAMETER and

will subsequently be included in the library and added to the table for future
use. Figure 1b presents the pseudocode for the Generator, which launches in
parallel each element of ST-UM and LT-UM, waits for all elements to finish and
finally aggregates the results. Implicit is the fact that the different dimensions
are independent in the sense that the value of one dimension of the model is not
needed to compute the value of other. Such limitations are easily avoidable by
creating functions that output more that one value at the same time. An example
in the context of modeling users for telco applications would be the dimension
total number of calls, which can be calculated as the number of received calls
plus the value of made calls. Instead of having three functions, one for each
value, it is much better to have just one function that outputs the three values,
letting the UM Generator decide which one of these outputs are needed.
TODO: discuss aggregation and add aggregation figure

F,
- .
UM Aggregator [—»
Data * *
- .

Fu 4{ LT-UMy

Fig. 2: Software Architecture of the Execution for LT-UM. An equivalent process
is run in parallel for ST-UM.

3.5 Implementation

The architecture for user modeling we are presenting is heavily influenced by
the concepts and philosophy used in the MapReduce [6] programming model.
MapReduce is a framework for processing massive amounts of data in parallel
using a (typically large) cluster of computers. The data can be unstructured (i.e.
not a database) which applies to large quantities of data used for UM, such as
server logs, telecommunication Call Detail Record (CDR) logs or search engine
query logs. From the Map/Reduce perspective the UM Generator is a direct im-
plementation of mapping elements of the vectors to machines and then reducing
the outputs to construct the final user model. The architecture detailed above
has been implemented using Hadoop [1], an open-source Java implementation of
MapReduce, and HDFS [2], the associated distributed file system.

The functions included in the UM library will usually be implemented as
MapReduce processes, although the functions can be implemented using tradi-
tional programming paradigms. Nevertheless, the choice of implementation will

deeply impact the computational throughput because of the large volume of data
and the need to aggregate all the results to produce the final UMs.

4 Terabyte-Scale User Modeling for Telco Applications

Telco applications focus on understanding how individuals use their cell phone,
and how that knowledge can be used for providing better services. Common
applications include churn prediction[13][4] or fraud detection [9], all of which
focus on user activity. All these applications use the same data source CDR (Call
Detail Records), and the different user models can have elements in common
which can be shared using the pluggable nature of the architecture. In all these
applications the behavior of the user is represented with a vector that contains a
set of elements, and these vectors are used for training classification or regression
algorithms. These are also examples of application areas where it is common
to have as input several terabytes of data from tens of millions of users and
where obtaining user models in a timely fashion is key. For example, churn or
fraud detection models are usually run on a daily basis with all the available
information to detect users ar risk. Note that the execution of the classification
algorithms can also be run as part of our architecture.

4.1 UM Library for Telco Applications

The functions implemented in the UM Libray for Telco Applications have been
selected from the wide literature in churn prediction, fraud detection, personal-
ization and recommendation and also from our own experience. In some cases,
like [10], we can find elements already developed using the MapReduce philos-
ophy that can be directly added to the Library. Here we briefly detail some of
the functions implemented:

1. CALLS(): for each user identifies the total number of phone calls made, to-
tal duration of the calls, total number of phone calls received, total duration
of calls receive, percentage of calls made to other networks and percentage
of non-local calls. This is an example of a function that for computational
purposes produces multiple outputs. If only a subset is specified by the meta-
model the UM Generator will ignore the dimensions not needed.

2. SMS(): The same as in the previous case but considering SMSs and where
duration of the call is substituted by the number of bytes in the text message.

3. DEGREE(): for each user obtains the IN-DEGREE, the OUT-DEGREE,
and the TOTAL-DEGREE of voice calls, also for each one of these outputs
the values for individuals that use the same carrier and other carriers is used.

4. DEGREE-SMS(): the same as the previous function but considering SMSs
only.

5. CALLS2NUMBER(PHONE-NUMBER): for each user it identifies the num-
ber of calls and the total calling time to a specific PHONE-NUMBER or
group of numbers. This function is very useful to quantify accesses to spe-
cific services.

6. TERMINAL(): for each user it identifies how many times a new terminal
has been used and the age of the current terminal.

Figure 3 presents an examples of the function XXX included in the UM
Library for Telco Applications coded with hadoop. DESCRIPTION OF THE
CODE. TODO: Add code, describe it

ejemplo de codigo

Fig. 3: Example of Hadoop code for implementing the XXX function.

4.2 TUser Metamodels

In this section we describe two examples of UMs built with the UM Library for
Telco Applications: Churn Prediction and Fraud Detection. Churn is one of the
main problems of any telco operator. In general the reasons for churn are multiple
but there are a variety of factors that are good indicators such as the number of
individuals in a subscriber’s social network that use other carrier, the number of
complaints the subscriber makes to the operator, or a large number of phone calls
to other service providers. The UM generated by our architecture will be fed to
an SVM that has already been trained to identify people at risk of churning. This
feeding happens on a daily basis, thus the need to have the models of all users in
a timely fashion. In this context using a ST Model and a LT Model is very useful
for measuring recent changes in individual behavior and we assign ST and ST,
to span 5 days and LT and LT, to span 30 days. ST-UM and LT-UM contain in
this case the same dimensions: (1) CALL2NUMBER(CUSTOMER-SERVICE-
NUMBER) to have information about the frequency of calls to the Customer
Service of the Carriers; (2) CALL2NUMBER(OTHER-CUSTOMER-SERVICE-
NUMBER)to have information about the frequency of call to Customer Services
of other carriers; (3) TERMINAL() to have an indication of the frequency with
which the user acquires new hardware; (4) DEGREE(). TOTAL-DEGREE, only
the TOTAL-DEGREE output of the function DEGREE is used the UM;(5)
DEGREE(). TOTAL-DEGREE-OTHER-CARRIERS; and (6) CALLS().NUMBER-
CALLS.

CAMBIAR ESTO ... Fraud detection in the telco context aims at detecting
individuals that acquire a cell phone and do not intend to pay their contract. Note
that the problem focuses only on new clients. In general fraudulent subscribers
are characterized by high peaks of consumption and calls to the same social

circles [9]. As in the previous case, once the UM are generated they are fed
into an SVM that has already been trained to identify fraudulent behaviors. As
for the metamodel, it only defines a short term model of 14 days and no long
term model. sT-UM is defined with the following dimensions: (1)CALLS(), with
all the inputs that the function produces being stored; (2) SMS(), with all the
inputs being included in the model; (3) DEGREE(), and (4) DEGREE-SMS().
The FILTER indicates that only new clients have to be considered. Again this is
an application very time sensitive, and the sooner fraudulent activity is identified
the better.

5 Architecture Performance Evaluation

In order to evaluate the performance and scalability of the architecture proposed
in 3, a reference implementation was developed using a combination of Java and
Hadoop. The performance of the architecture, measured in terms of total running
time in seconds for producing user models, was evaluated in terms of two primary
variables: (1) the number of CPUs available in the compute cluster, and (2) the
number of dimensions in the short and long term user models.

5.1 MetaModels Used for Performance Evaluation

From the UM library, 7 different variables were chosen that exhibited similar
performance characteristics (within one percent difference in running time). Us-
ing the chosen set of variables, 14 total metamodels were created, 7 consisting
only of a short term user model and 7 consisting only of a long term user model.
The short term metamodels, denoted as M Mg1, M Mg, ..., M Mgz, all specified
3 days of data, and the ith short term metamodel specified a user model consist-
ing of the first ¢ variables (and no long term model). The long term metamodels,
denoted as MMy, MM;ys, ..., M M;pr, all specified 30 days of data, and the ith
long term metamodel specified a user model consisting of the first ¢ variables
(and no short term model).

5.2 Data Sets Employed for Testing

For the purpose of the performance evaluation, anonymized CDR data from a
major mobile phone operator in a developed country was used. Data was made
available as a set of files where each file corresponded to all CDRs for a given day
of global activity. The 3 day short term model and the 30 day long term model
thus consisted of 3 and 30 files. The CDR information present in each record
included the encrypted originating phone number, the encrypted destination
phone number, the duration of the call in seconds, and the time and date when
the call originated. The total number of calls for the short term and long term
user models was 2.18 * 108 and 2.17 * 10°, comprising 10.1 and 103.0 gigabytes
of data with a total of 300,000 users.

10

5.3 Cluster Hardware and Software

The experiments were run on a compute cluster of five nodes. Each node con-
sisted of 16 GB of RAM, 4 hard drives with 1 Terabyte storage capacity, and 4
quad core processors. The nodes were all connected with a fast 100 GB network
switch. While performing the experiments, the compute cluster had no other
significant processes running.

For the results presented, version 0.20.1 of Hadoop was deployed. Changing
several default settings were found to increase performance for executing a vari-
ety of metamodels. Those with the most impact on performance were: changing
the maximum number of both map and reduce tasks run on each machine from
2 to 6, increasing the size of the JVM for each task from 200 MB to 1 GB,
increasing the size of sort buffers from 100 MB to 500 MB, increasing the sort
factor from 10 to 100, increasing io file buffer size from 4 KB to 64 KB and
increasing the proportion of the total heap size used for retaining map outputs
in memory during the reduce stage to 90%.

5.4 Performance Results

One of the assumptions of the proposed architecture is that it is highly scalable.
In order to test this premise, different HW configurations were used in order
to disable a specified numbers of available CPUs. For each configuration, both
M Mg, and M My, were built using the specified number of CPUs. The results
are presented in Figure 4a, where the x-axis reflects the number of CPUs enabled
in the cluster, and the left (short term) and right (long term) y axes show the
total time taken in seconds to build the short and long user models. There is
a factor of 10 difference in the left and right y axes, reflecting the fact the the
long term model is built from roughly 10 times as much data. In both cases, the
time taken to build the user model initially decreases as more CPUs were added
but eventually additional CPUs did not further decrease running time, with
performance reaching a maximum at about 50 CPUs. This pseudo-exponential
performance curve is in agreement with previous finding [10], and likely results
from memory saturation as each CPU corresponds to a map or reduce process
that may need a substantial amount of memory for sorting results. Even with
only 10 available CPUs, more than 2 billion CDRs were processed and a long
term user model of one dimension was built in about 1 hour and 17 minutes.
Another assumption of the proposed architecture is that as more dimensions
are added to the user model, performance scales well to accommodate addi-
tional dimensions. In order to test the relationship between total running time
and the number of dimensions in the user model, the cluster was configured to
always have 40 CPUs, using 8 CPUs from each of the 5 machines. The 7 short
term metamodels M Mgy, M Mg, - , M Mg and the 7 long term metamodels
MMy, MMy, -+, MMy, were each fed into the architecture and the corre-
sponding user models were built. The resulting running times are presented in
Figure 4b, where the x-axis represents the number of dimensions in the user
model and the left (short term) and right (long term) y axes show the total time

11

600 T 6000 1000 10000
—*—Short Term —*—Short Term

@ Long Term 9000 Long Term 9000
& 5000 & & 800 48000 .
8 8 3 8
5 20008 o 700 / o002
£ £ E g
= = = 600~ 6000 =
o (=] =2l f=2}
£ =4 £ <
< 5000 £ € 500 5000 €
5 5 5 S
= z < 400 4000 &
3 -2000 8 3 B
= - 2 = 300 3000 2
= p—_—— 2 s = o
L2 L pan} 1%} o pan}

100 1000 200, 2000

100 1000

10 20 30 40 50 60 1 2 3 4 5 6 7
Number of CPUs Number of Dimensions in User Model
(a) Time vs. Number of CPUs (b) Time vs. User Model Size

Fig.4: Time Needed to Build Long and Short Term User Models

taken in seconds to build the short and long user models. Both short and long
term models are seen to exhibit linear scalability. As in figure 4a, there is a factor
of 10 difference in the left and right y axes, and the two lines closely follow one
another evince a strong linear relationship. The correlation coeflicient between
the number of model dimensions and the short and long term running times are
0.9994 and 1.0000, providing strong evidence for linear scalability. It is worth
noting that in the experiments presented, building a long term model with 7
different dimensions from a real data set with more than 2 billion records took
a little more than two hours, implying that the architecture can easily support
daily updates of the user models for the data sets considered.

6 Conclusions & Future Work

We have presented a pluggable architecture for building both long and short
term models. The concept of a metamodel is used, allowing for the abstraction
of commonality from different user model building processes. The resulting archi-
tecture can be used to quickly build different short and long term user models
from massive data sets with little to no new software development. The pro-
posed architecture is very generic and can be used for any application area that
has record-based log files. The pluggable components were implemented in Java
using MapReduce but the architecture can execute components written in any
language.

The architecture was implemented and its performance has been tested under
several scenarios. We found that increasing computer resources, as measured by
the number of available CPUs in a compute cluster, decreases the running time
needed for building user models to a certain point, after which more CPUs no
longer decrease model build time. We also verified that the architecture can scale
lineraly with the number of dimensions in the user model. The results highlighted

12

the ability of the architecture to produce user models in a timely fashion and
thus be used for applications with strong time constraints.

For future work, we would like to expand the set of components included

in the UM library. We will add more components relevant to different telecom
application areas as well as either writing or reusing existing components for
web mining, thus allowing the architecture to support the building of long and
short term user models for personalization or recommendation systems.

References

10.

11.

12.

13.

14.

Hadoop information. http://hadoop.apache.org.

Hdfs architecture. "http://hadoop.apache.org/common/docs/current/hdfs_
design.html".

P. Brusilovsky, S. Sosnovsky, and O. Shcherbinina. User modeling in a distributed
e-learning architecture. Lecture notes in computer science, 3538:387, 2005.

K. Dasgupta, R. Singh, B. Viswanathan, D. Chakraborty, S. Mukherjea, A. Nana-
vati, and A. Joshi. Social ties and their relevance to churn in mobile telecom net-
works. In Proceedings of the 11th international conference on Extending database
technology: Advances in database technology, pages 668—677. ACM, 2008.

P. De Bra, A. Aerts, B. Berden, B. De Lange, B. Rousseau, T. Santic, D. Smits,
and N. Stash. AHA! The adaptive hypermedia architecture. In Proceedings of the
fourteenth ACM conference on Hypertext and hypermedia, page 84. ACM, 2003.
J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
pages 137-150, 2004.

J. Fink, A. Kobsa, and A. Nill. Adaptable and adaptive information access for
all users, including the disabled and the elderly. COURSES AND LECTURES-
INTERNATIONAL CENTRE FOR MECHANICAL SCIENCES, pages 171-174,
1997.

R. Grossman and Y. Gu. Data mining using high performance data clouds: Exper-
imental studies using sector and sphere. In Proceeding of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 920-927.
ACM, 2008.

S. Hill, D. K. Agarwal, R. Bell, and C. Volinsky. Building an effective representation
for dynamic networks. Journal of Computational € Graphical Statistics, 15:584—
608(25), September 2006.

U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale graph mining
system - implementation and observations. IEEE International Conference on
Data Mining, 2009.

A. Kobsa. Generic user modeling systems. User modeling and user-adapted inter-
action, 11(1):49-63, 2001.

A. Pereira, R. Baeza-Yates, N. Ziviani, and J. Bisbal. A model for fast web mining
prototyping. In Proceedings of the Second ACM International Conference on Web
Search and Data Mining, pages 114-123. ACM, 2009.

C. Wei and 1. Chiu. Turning telecommunications call details to churn prediction:
a data mining approach. Expert systems with applications, 23(2):103-112, 2002.
C. Wood and T. Ow. WEBVIEW: an SQL extension for joining corporate data to
data derived from the web. Commun. of ACM.

