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Abstract— Call Detail Record (CDR) databases contain mil- date of the connection and the tower used, which gives an
lions of records with information about cell phone calls, ircluding  indication of the geographical position of the user. Suctada
the position of the user when the call was made/received. THi is very rich and has been used recently for several apgitsti

huge amount of spatiotemporal data opens the door for the \ .
study of human trajectories on a large scale without the bias SUCh @s study of the user's social network [1], [2], [3], huma

that other sources (like GPS or WLAN networks) introduce Mobility behaviors [4], [5], [6], [7], and cellular network
in the population studied. Also, it provides a platform for the improvement [8].

development of a wide variety of studies ranging from the  The volume of data generated by a given operator in the
spread of diseases to planning of public transport. Nevertless, form of CDRs is huge and contains very valuable spatio-
previous work on spatiotemporal queries does not provide a . . . .
framework flexible enough for expressing the complexity of tgmppral 'nform.at'on at[ d'ﬁ?rem 'e}’e_'s of grianullarlty.g(e
human trajectories. In this paper we present the Spatiotempral ~ Citywide, statewide, nationwide). This information iseent
Pattern System (STPS) to query spatiotemporal patterns inery  not only for the telecommunication operator but also is the
large CDR databases. STPS defines a regular-expression gyer pase for a broader set of applications with social conrarnati
language that is intuitive and that allows for any combinatbn like commuting patterns, transportation routes, conetioins

of spatial and temporal predicates with constraints, inclding . ..
the use of variables. The design of the language took into of people, etc. The ability to efficiently query CDR datalzse

consideration the layout of the areas being covered by the in search of spatio-temporal patterns is key to the deveéom
cellular towers, as well as “areas” that label places of inteested of smart cities. Nevertheless, commercial systems auailab
(e.g. neighborhoods, parks, etc) and topological operater STPS  to telecommunication operators today cannot handle thnig ki
includes an underlying indexing structure and algorithms br of spatio-temporal processing. One possible way to analyze

query processing using different evaluation strategies. Afull h patt is t f tial . fth hol
implementation of the STPS is currently running with real, very such patterns IS to perform sequental scanning of the whole

large CDR databases on Teléica Research Labs. An extensive database (or call records) and, for each one, check it using
performance evaluation of the STPS shows that it can efficidly a subsequence matching like algorithm against the query
find complex mobility patterns in large CDR databases. pattern. Such simple approach is computationally extrgmel
expensive due to the amount of data to be processed. Another
problem of such approach is the fact that no information
The recent adoption of ubiquitous computing technologi@out the temporal dimension (e.g. between two given days
by very large portions of the population has enabled — for tif§ between two given hours) or spatial properties (e.g. in a
first time in human history — to capture large scale spatigiven neighborhood, near a given spot, intersecting a given
temporal data about human motion. In this context, mobig&ea) are considered to process the database.
phones play a key role as sensors of human behavior becausiaking into consideration the large volume of data and the
they typically are owned by one individual that carries thegm current implementation of commercial systems for telecom-
(almost) all times and are nearly ubiquitously used. Heiice munication providers, one effective way to support such
is no surprise that most of the quantitative data about hum@attern queries is to provide the current systems with some
motion has been gathered via Call Detail Records (CDRs) ipflexes and algorithms to efficiently process such spatio-
cell phone networks. temporal patterns. One aspect that has to be considereatis th
When a cell phone makes or receives a phone call tReCh commercial systems are in its majority implemented on
information regarding the call is logged in the form of a CDROp of Relational Database Management System (RDBMS).

This information includes, among other data, the time ankherefore, using its infrastructure such as tables, inslexe
(e.g. inverted indexes and B-trees), merge-join algorithand

"Work done while author was an intern at Telefonica ResedBghain S0 on, is, in general, straightforward. Another aspect to be
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considered is using the same operational CDR databases withinly for: (1) time-series databases; (2) similarity bedw
the current systems. This issue become important whemdealirajectories and (3) single predicate for trajectory d&R$).
with large CDR databases since duplicating/migrating to aPattern queries have been used in the past for querying
different database schema can be very expensive. time-series using SQL-like query language [10], [11], or
In this paper we present the Spatio-Temporal Pattern Systesent streams using a NFA-based evaluation method [12];
(STPS) to query spatio-temporal patterns in CDR databashewever, the environment in these works is different than th
The STPS is designed to express mobility pattern querigs WiEDRs considered in this paper. Our work differs from these
a regular expression-like language that allows to contaii v solutions since our framework provides a more rich language
ables over the query space regions. STPS includes lightiveitp specify and evaluate patterns. Topological, variables a
index structures that can be easily implemented in mosiore complex patterns can be specified and evaluated in an
commercial RDBMS. We present an extensive experimengfficient way, while in those previous this is not possibler F
evaluation of the proposed techniques using two real CDRoving object data, patterns have been examined in thexdonte
databases. The experimental results reveal that the prdposf query language and modeling issues [13], [14] as well as
framework is scalable and efficient under various scenariggiery evaluation algorithms [15], [16].
Our proposed system is up to two orders of magnitude fasterSimilarity search among trajectories has been also well
than a base line implementation, making the STPS a vestudied. Work in this area focuses on the use of different
robust approach for querying and analyzing very large phordistance metrics to measure the similarity between trajess.
call databases. A fully operational prototype is impleneent Examples include [17], [18], [19], [20]. Non-metric sinmilty
and running on Telefonica Research Labs. functions based on the Longest Common Subsequence (LCS),
Some of the ideas proposed in this paper were first i€ examined in [21]. [18] proposes to approximate and index
troduced in one of previous work for trajectorial archived multidimensional spatio-temporal trajectory with a lowler
[9]. This paper differs from our previous work in severafontinuous Chebyshev polynomial which can then lead to
aspects: (1) the STPS system is proposed for CDR databag##ient indexing for similarity queries [19].
while [9] works only for trajectorial archives; (2) the sjmat  Single predicate queries for trajectory data, like Rangg an
temporal pattern language proposed in this paper, as wellNi§ queries, have been well studied in the past (e.g. [22], [23])
the algorithms and structures to evaluate such patterks, t& query is expressed in those works by a single range or
into consideration the behavior of mobile phone users,aihil NN predicate. Further constructions to build a more complex
our previous work they only applies for trajectorial dataend query, e.g. a sequence of combination of both predicates,
the position is constant monitored and stored in the arshivés not supported in those works. In [15] it is examined
(3) another difference related to the language is that hdpgremental ranking algorithms in the case of simple spatio
the spatio and temporal predicates are more important wHemporal pattern queries. Those queries consist of rande an
defining patterns, while in [9] the sequence and repetitibn BIN predicates specified using onfixed regions. Our work
predicates are more relevant; (4) the last major differendéfers in that we provide a more general and powerful query
is related to the space domain. in this paper we use tfiamework where queries can involve both fixed amdiable
mobile framework to specify the possible predicates aloriggions as well as variables, negations, topological apesa
with topological operators that can be specified in the quei§mporal predicates, etc, and explicit ordering of the joates
patterns, while in [9] the space domain is created using a ngHong the temporal axis. In [16], &MP-based algorithm
overlapping discretization of the space domain. Eachdtajg [24] is used to process patterns in trajectorial achievéds T
is then converted to this representation to further inggst Work, however, focuses only on range spatial predicates and
the index structures in order to support efficiently evabrat cannot handleexplicit and implicit temporal ordering of the
of trajectories. More details on the similarities and difieces predicates. Furthermore, this approach on evaluatingpatt
of the STPS and our previous work are emphasized in the nieffectively reduced to a sequential scanning over theofis
sections. trajectories stored in the repository: each trajectonhiscked
The remainder of the paper is organized as follows: Sectidiflividually, which becomes prohibitive for large trajent
Il discusses the related work; Section I provides somdchagrchives. In our experiments (Section VI) we show that the
descriptions on the data and infrastructure to understaisd tKMP approach to evaluate patterns defined using our proposed
paper; Section IV provides the basic definitions and formBRttern language is very inefficient.
description of the mobility query language; The proposed In previous approaches, to make the evaluation process more
system is described in details in Section V and its expertaienefficient, the query predicates are typically evaluatelizirty

evaluation appears in Section VI; Section VII concludes tHterarchical spatio-temporal indexing structures [25]os¥
paper. structures use the concept of Minimum Bounding Regions

(MBR) to approximate the trajectories, which are then iredex
using traditional spatial access methods, like the MVR-tre
[26]. These solutions, however, are focused only on single
Infrastructures for querying spatio-temporal patterngehapredicate queries. None of them can be used for efficient
already been studied in the literature in different corgextevaluation of flexible pattern queries with multiple preatees,

Il. RELATED WORK



like our solution.

Although related to [9], the STPS was designed for larg
CDR databases, while the first for trajectorial achieves. |
[9] we proposed a pattern language where repetition, ogkion
predicates and sequence can be specified. Also, distanee bas
constraints (e.g. “find trajectories that were as close asipkz (.) T ovng A
to the LAX airport”) can be added to the query. Trajectories
are “fragmented” into segments defined by partitioning they 1. (eft) original coverage areas of BTSs and (rightpragimation of
space domain in non-overlapping regions. Then indexes aogerage areas by Voronoi diagram.
built using those fragments and to declare the pattern kgeu
While this approach has its advantages, this preprocessing
makes the framework static. If a new language is needédd the mobile network, mainly the power and position of each
the whole trajectorial archieve has to be processed again @ftenna.
the indexes have to be constructed again. Other solutians arCDR databases are generated when a mobile phone con-
also feasible but most of them require that a merge-algurittnected to the network makes or receives a phone call or uses
be executed and/or a verification steps be performed. In thisservice (e.g., SMS, MMS, etc.). In the process, and for
paper we do not have this drawback since CDR databa#@#ice purposes, the information regarding the time ared th
is provided using an underlying cell phone network an8TS where the user was located when the call was initiated is
our proposed language supports topological, cell-based d@gged, which gives amdicationof the geographical position
“constants” (defined over a set of predefined cells) predgatof a user at a given moment in time. Note that no information
Furthermore, our work emphasis in temporal and topologi(ﬁpout the exact position of a user in a cell is known. Also, it
predicates that are more relevant for mobile phone networkspossible to store for a given call not only the initial BTS,
while in [9] we focus on patterns that contain repetitiongut also the set of BTSs used during the length of the call
wild-cards predicates, optional operators, and distdrased (BTS hopping option). This allows for a richer represewtati
contraints, which are more relevant for trajectorial areki ~ of the mobility of the users.

The query language we present in this paper, designedn our system we use the set of attributes common to all
to capture the complexity of human trajectories for massifeDR databases. These include: (1) the phone nuptbere;q-

amounts of mobile phone-call data, is, to the best of off making the call; (2) the phone numhehone;q-D receiving
knowledge, the first of its kind. the call; (3) the type of the service (voice: V, SMS: S, MMS:

M, etc.); (4) the BTS identifier (BTS-O) on whichphone;q-

O connected to make the call; (5) the BTS identifier (BFB)

on whichphone;4-D connected to receive the call; (6) date and
Cell phone networks are built using a set of base transceitigne (timestampthat started the connection betwegwne; -

stations (BTS) that are in charge of communicating cell gho® andphone;q-D using BTS4-O and BTS4-D, respectively;

devices with the network. The area covered by a BTS is calladd (7) the total duration of the cadkur between the two

a cell. A BTS has one or more directional antennas (typicalparties for BT$;-O and BTS4-D; The BTS identifier will

two or three, covering 180 or 120 degrees respectively) thr@present the position of the phone number that is a client

define a sector and all the sectors of the same BTS define tfighe provider keeping the CDR database. If both numbers

cell. At any given moment in time, a cell phone is coveredre part of the provider two BTSs will be present, one

by one or more antennas. Depending on the network traffiodicating the position of the originating number and aroth

the phone selects the BTS to connect to. The geographieak indicating the position of the destination number. When

area covered by a cell depends mainly on the power of ttiee BTS hopping option is enabled, a new CDR row is

individual antennas. Depending on the population dentity, created every time either users change their positions.nwhe

area covered by a cell ranges from less than 12Kmdense the hopping is not available, only a single CDR is stored to

urban areas to more than 5 Rnin rural areas. Each BTS represent the initial position gfhone;q-O andphone;q-D for

has a latitude and longitude that indicate where is locatdtie total duration of the call.

For simplicity, we assume that the cell of each BTS is a 2-

dimensional non-overlapping region and use Voronoi diagra

to define the covering area of the set of BTSs considered.

Figure 1 presents on the left a set of BTSs with the original[ timestamp[ dur. | phone;4-O | phoneiqaD | B1S;4-0 | BTS;4-D | type |

O Approximated Covering Area

IIl. | NFRASTRUCTURE FORDATA ACQUISITION

TABLE |
A SET OFCDRS REPRESENTING} DIFFERENT CALLS.

coverage of each cell, and on the right the simulated coeerag 1123212 3 | 4324542 | 4333434 231 121 v
. . . . . . . 1123215 | 2 4324542 4333434 232 121 Y
obtained using Voronoi. While simple, this approach gives —rs17 54324502 | as33a38 | 234 e )
us a good approximation of the coverage area of each BTS. 1123235 2 | 4324542 | 5334212 235 231 v
; ; 1123237 | 4 | 4324542 | 5334212 231 233 | V

Also, the Ioca‘uo_n of moblle_ users connecte_d to BTS_s A et 55 e
approximated using those Diagrams. In practice, to buidd th 1124116 | 4 | 4333434 | 4324541 239 231 | V
“real” diagram of coverage, one has to consider severabfact [ 1124116 ] 1 | 5334212 | 4333434 451 239 S




Q:= (S [UC)) combination the spatial part of the predicate, ancepresents

S ={P1.P2,.... Pu},[S| =n the temporal part of the predicate. The operatgrdescribes
Pi = (opi, Ri[, til) the topological relationship that the spatial regi@ and
opi := d|5]0|n_t|meetoverlaqequa| an instance in the database must satisfy over the (optional)
insidgcontaingcovergcoveredBy temporal predicate;.

R;e{ZUAUT}
t; == (tfrom : tto) | ts | t,
Fig. 2. The STPS Pattern Query Language.

B. Spatial Predicates

The cells, that represent the covering areas of each BTS,

Table | shows an example for 4 different calls where use?é€ represented using Voronoi diagrams. Such set of Voronoi
change their locations during the call. In this example tfiagrams is represented Byin our language. In the following
provider storing the CDR database is all the same and th€ use capital letters to represent the setBifS, ¥ =
option of BTS hopping is enabled. The phone number 4324544, B, C, ...}. In our pattern language, regions (e.g. districts,
makes a phone call at timestamp 1123212 to 4333434 startiigjghborhoods, areas of interest, etc) can be defined by a set
in BTS 231. Then the user 4324542 moves from BTS 2%f BT'Sia, i.e. although the ares representedibgre fixed, on
to 232 after 3 minutes of starting the call, generating amotHop of that geographical maps with different granularityr ca
input in the database. After 2 miutes, user 4324542 movesh® defined. For instance, one can define the downtown area
BTS 234 staying there for 5 minutes when the call finisheBY POWNTOWN = {D,E,H} and MALL = {G}. The
The user 4333434 stays connected to the same BTS 121 dufigfleB1'Sia can be assigned to multiple regions and not all
the call, which does not necessary means that the user st8y$ have to be included in each geographical map.
on the same place, but connected to the same cell 121 foin P;, the aredR; can be one of the four following region
the whole period of the call. If the BTS hopping was nospecifiers: a particulaBT'S;; € ¥; an aliasA € A defined
enabled, the first three entries would have been presentedusa set of one or mor&7TS;4; a polygon defined by a set
just one, with just the initial BTS 231 and a total duratiorl6f of pairs < longitude, latitude >; or a variable) € T'.
minutes. The second call in the table represents the calemadWe have used the eight topological relationshigisjoint,
from 4324542 to 5334212, and the third one from 433343deet overlap equal inside contains coversand coveredBy
to 4324541. The eigth entry of the table details an SMS sefot op; described in [13]. Given an instance of tiigDR
from 5334212 to 4333434 when they were connected to BT8atabaseC DR; and a regionR;, the operatorop; returns
451 and 239, respectively. a boolean valud = {true, false} whether theCDR; and
the regionR; satisfy the topological relationshigp; (e.g., an

IV. THE STPS RTTERN QUERY LANGUAGE . ; X . .
. . i Insideoperator will betrue if the user associated withhone;q
The previous section commented how the spatm-tempowj

. ) ssometimenside regionR; during timet;). For simplicity
|n_format|on collected by the CI_DR databases can have P the following we assume that the spatial operator is set to
different formats: the first case just collects the BTSs Whernsideand it is thus omitted from the query examples.

the user initiated the call and in the second case the whoIeA redefined region (i.eR; € SUA) is explicitly specified
trajectory during a call is stored (at a BTS level). In geher% P 9 T plicitly sp

the first case can be considered a subset of the second Of the user in the query predicate. In contraryzaiable de-

The STPS language is valid for both cases; i.e. we Cgrcl)?es an arbitrary region and it is denoted by a lowercater let

query for patterns using records for the same call or diffErepreceded by the@” symbol (e.9. @s7). A variable region

L ; ) N is defined using symbols ift, whereI' = {Qa, @b, Qc, ...}.
calls. This is only possible because we can "enable tempo[{ilnless otherwise specified, \aariable takes a single value
predicates for each spatial predicate and, thereforeriatest . P ! 9

that user “movements” are associated to a single call. In tHnstance) from (e.g. @a=CY); however, in general, one can

next subsections we describe the syntax of the STPS patt%FSO specify the possible values ofvariable as a subset

guery language and its components: the spatial predidhtes,o{r.b (e.g., "any city district with museums )- _Conce_ptually,
temporal predicates, and the constraints. variableswork as placeholders for explicit spatial regions and

can become instantiated (bound to a specific region) duhiag t
A. STPS Language Syntax guery evaluation in a process similar to unification in ledjic
A pattern queryQ is defined aQ = (S [|JC]), whereS is  Programming.
a sequential pattern arttlis an optional set of constraints. A Moreover, the samariable “@z" can appear in several
phone;q matches the pattern quegy if it satisfies bothS and different predicates of patter$, referencing to the same
C. A sequential patter$ is expressed as a path expressioregion everywhere it occurs. This is useful for specifying
of an arbitrary numben of predicatesS = {P;.P».,...,.P,}. complex queries that involve revisiting the same regionynan
Figure 4 details formally the syntax of the STPS language.times. For example, a query likedz. B.Qz” finds users that
Each spatio-temporal predicaf® is defined by a triplet started from some region (denoted by variabliec"), then at
Pi; = (opi, Ri[, t;]), whereop; andR; represent a topologi- some point passed by regidB and immediately after they
cal relationship and a geographical area respectively,iandvisited the same region they started from.



C. Temporal Predicates entries to be further processed by our algorithm. This iy onl

A predicate; may include an explicit temporal constrainP0Ssible because entries in each I81'S;q has its entries

t; in the form of: (a) interval time(tsom : ti) where oOrdered by ghone;stimestampkey. _

tfrom < tio; (b) snapshot time,; (c) or (d) relative time For eacthSid, two index structures are bwlt; qne*B
t. = t; —t;_1 t0 a previoust;_, spatio-temporal predicate (€€ 0 organize entries by the temporal attribuit@es-
P,_1. This implies that the spatial relationship; between t@MA and_ oneinverted-indexwhere entries are ordered by
a CDR; and regionR; should be satisfied in the specifiedPioneiatimestamp. The Bf-tree may be used to prune
time ¢; (e.g. “passed by areB between 10am and 11am”). hcen_tnes that do not satisfy a temporal predicate. The siyaté
the temporal constraint is missing, we assume that theaspatiSing or not the B-tree will depend on the type of temporal
relationship can be satisfied any time in the duration of b cdpredicate that is being evaluated (more discussion latdrisn
For simplicity we assume that if two predicat®s, P; occur section). Thenverted-indexof a g|venB_TSid stores all gall
within patternS (wherei < j) and have temporal constraintg©cords that were connected f87'S;; in sometime during
t;,t;, respectively, then these intervals do not overlap andthe call. In theinverted-indexeach entry inBT'S,4 is a record

occurs before; on the time dimension. that contains ghone;q, the timestampand duration during
' _ which the user was inside regidsil’S;4, and a pointer to the
D. Pattern Constraints CDR record associated to the call in the CDR archive. If a

Spatio-temporal predicates however cannot answer quefi#s€r connects to a giveBT'S;; multiple times in different
with constraints (for example, “best-fit’ type of queries dimestampswe store a record for each uses. Records in
like NN and the related — that find user which best matc¥1 inverted-indexare ordered first by thehone;q and then
a specified pattern). This is because topological predicate by timestamp For example, in Figure 3 theerted-index
binary and thus cannot capture distance based propertieify for the regionD is {4324542,10-01-09 10:23:45,35;
the users. The optiondl part of a general quer@ is thus 4324542,10-01-09 10:59:12,01;}...Note that records from

used to describe distance-based or other constraints athenggn inverted-indexpoint to the corresponding CDR call in
variablesused in theS part. A simple kind of constraint canthe CDR archive. For example, the record 4324542,10-01-09
involve comparisons among the used variables (@g!=@y). 10:23:45,35 in thenverted-indexi 4233 contains a pointer to
More interesting is the distance-based constraint whiafe hahe CDR record of4324542.

the form (AGGR(dy,ds, ...);8) and is described below. For evaluating pattern queries we propose theex Join
Pattern (1JP) algorithm. This algorithm is based onnaerge-
E. STPS Language Examples join operation performed over tlieverted-indexesorrespond-

The use ofvariablesin describing both the topological pred-ing to every fixed predicate in the query patten
icates and the numerical conditions provides a very powerf . )
language to query patterns. To describe a query, the user nThe Index-Join Pattern Algorithm (1JP)
use fixed regions for the portions of the users movement wherelo simplify the presentation we first start with the evaloati
the behavior should satisfy known (strict) requirements] a of the spatial predicates for a pattesn Later we extend the
variablesfor portions where the exact behavior is not knowsliscussion to cover queries that in addition contain peaeic
(but can be described by a sequencevafiables and the constraintsC. Finally we present the incorporation of time
constraints between them). The ability to use the seaniable constraints inside the pattern quegy
many times in the query allows for revisiting areas, while th 1) Spatial Predicate EvaluationWe start with the case
ability to refer to thesevariablesin the distance functions where the patter§ does not contain any explicit temporal
allows for easy description dfiN and related queries. constraints. In this scenario, the pattern specifies therdry

3 COMPEX EXAMPLES HERE EXAMPLES ARE Wwhich its predicates (whether fixed or variable) need to be
NEEDED in this section, EITHER IN A SUBSECTION satisfied. Assume containsn predicates and lef; denote

OR IN THE TEXT. the set of f fixed predicates, whileS, denotes the set of
variable predicatesnEf+v). The evaluation ofS with the
V. QUERY EVALUATION SYSTEM IJP Algorithm can be divided in two stepgi) the algorithm

In order to efficiently evaluate pattern queries we use thregaluates the sef; using theinverted-indexindex to fast
index structures: one R-tree for the regions; onfetBee for prune users that do not qualify for the answgi); then the
each BT'S;4; and onénverted-indexfor each BT'S;4. Along collection of candidateusers is further refined by evaluating
with these indexes we also store &IDR in an archive, the set ofS,.
grouped byphone;; and ordered byimestampas shown in (i) Fixed predicate evaluation: All f fixed predicates in
Figure 3. The R-tree is used when there is a spatio-tempo$gal can be evaluatedoncurrentlyusing an operation similar
predicate inS that is a polygon type. In this case, the R-tree i® a “merge-join” among theimverted-indexe<;,i € 1..f.
evaluated in order to return the setBf'S;, that satisfies the Records from thesef lists are retrieved in sorted order
topological operator that contains the polygon. In caseretheby (phone;q,timestamp) and then joined by theihone;q’s.
the result set contains more than oB&'S,,4, then entries in Records are pruned using theone;;s andtimestampln each
each BT'S;; can be merged to form a unique list with allist £, we keep a pointep, that points to the record currently



(b) B+-trees (timestamp)

BTS= 231 (d) CDR database
1123212 1123235 1124116 1123212(3]4324542(4333434(231|121|V
/ / AN
12 14 k'Y
1123215|2|4324542(4333434(232/121|V
(a) BTS R-tree | 1123212|3]4324542 | 1123235(6]5334212 | 1124116(4[4324541 | P | 12321121
BIS=231 1123217)514324542/4333434234/121]V
- ,@/”I 4324541(1124116/4 | 4324542(1123212]3 | 4324542|1123235|6 I 1123235(2]4324542(5334212|235|231|V
n n
L \
- e N BTS= 121 1123237]4/4324542/533421223 11233V
u
"\ BTS= 121 T T 1124113(343334344324541238343|V
! I 4333434|1123212|10 | 4333434(1124141|5 | 5637231|1124141|5 I 1124116|4|4333434(4324541|239|231|V
1124131]1[5334212/4333434/451239/S
BTS=239
e 1124131[5[533456734356541239249/S
BTS=239
1124141/514333434/5334212]121[412]S
4333434(1124116]4 | 4333434(1124131|1 | 5334567|1124131|5 I

1124141(5/8435234/5637231/412]121|S

(¢) inverted-indexes

Fig. 3. Index framework: (a) BTS R-tree, (b) B+-trees (titaesp), (c) inverted-indexes, and (d) CDR database.

considered for the join. This pointer scans the list stgrfiom . Ly Lp
the tOp pkgﬂ 4324541,91002021312,1 rp— 4324541,91002021312,1
: 4324542,91001123212,3 4324541,91002021312,1
If the same region appears more than once in the paftesn 4324542,91001123237,5 4324541,91002021312,1

separate pointer traversing thaverted-indexs used for each 4324545,91001123337.4

region appearance in the pattern. For example, to process th
pattern)M.D.M theinverted-indexesf M andD are accessed
using one pointer foinverted-indexCp (pp) and two pointers

for traversinginverted-index\ (pas, andpag,). If @ phone;q
appears in all of th¢ inverted-indexeswvolved inS, and their
correspondingimestampsn all f inverted-indexesatisfy the
ordering of the predicates if, this phone;q is saved as a

possible solution. The pseudo code is shown in Algorithm \é'tored in ordered way, advancingraerted-indexorward to a
A.2. specific location stamp byhone;q or by (phone,q, timestamp
During the merge-join, there are cases where records fre@n be easily implemented using an index-Bee on the
the inverted-indexcan be skipped, thus resulting in faste(phrone, timestamp composite attribute.
processing. For example, assume that prediddtec S Example: The first step ofJP algorithm is illustrated using
(corresponding to thénverted-index.;) is before predicate the example in Figure 4. Assume the pattérin the query
Pj € § (corresponding taC;). Further assume that in ligt; 9 contains three fixed\(, D, M) and twovariable predicates
the current record considered for the join has phone identifia,, @z), as in:S = {@z.M.D.@z.M}. This pattern looks
phone,, while in list £; the current record considered hasor users that first visited some region denoted/agiable @z,
phone identifiephone;. If phones < phone,, processing in then it visited region\/ sometime later (no temporal predicate
list £; can skip all its records witphone;q < phone,. That is specified here), then regiaR and then visited again the
is, the pointerp; in list £; can advance to the first recordsame regiorz: before finally returning taV/. The first step
with phoneiq > phone,. Essentially, predicat®; cannot be of the join algorithm uses thiaverted-indexor M andD (£,
satisfied by any of the phones ify; with smaller phoneia  andfp). Conceptuallyp,s, represents the first occurrence of
thanphone,. Since records in &verted-indexare sorted by 37 in S (before D) and py;, the second occurrence aff
phoneiq, £; does not contain phones with smaller identifiergafter D).
thanr. The algorithm starts from the first record in 18, namely
Similarly, when a record from the samghone;; (e.g. (phone,10). It then checks the first record in ligtp, i.e.,
phoneg) is found in two inverted-indexege.g. £;, £;), the phonephones. We can deduce immediately thatone; is
algorithm checks whether the correspondingestampsof not a candidate since it does not appear in the listCof
the records match the order of predicates in the patfern So we can skiphone; from the £, list and continue with
Hence aphone;, that satisfiesS should visit the region of; the next record there, usephones,18). Since fhones,7) in
before visiting the region of;. If the record ofphones in list £Lp has timestamp smaller than (18), li8p moves to its
L; hastimestampthat falls after the correspondirignestamp next record fhones,21). These two occurrences phones
of phone, in list £;, this record can be skipped if;, coincide with the pattern\/.D of S so we need to check
since it cannot satisfy the query. Singwerted-indexesre if phone, uses again regiod/. Thus we consider the first

Fig. 4. CDR examples foinverted-indexesC; and L p.



Algorithm 1 1JP: Spatial Predicate Evaluation Seg1 Sego Segs

Require: Querys (91001123212,231) (H,23,4)
Ensure: Phones satisfying fixed; and variableS, predicates (giggﬁiiﬁiiii’ (B,24,25)
1 f — |Sy| > number of fixed predicates i§ 291001124113'2313

2: for i+ 1to f do > for eaCth (91001124116:231)

3 Initialize £; with the cell-list of P; (91001124923,233)

4: Candidate SetV « () (91001141251,232)

5: for w— 1to |£:]| do > analyze each entry i, (91003091232,245)

6: p1=w > set the pointer forC,

7: for j «— 2to f do > examine all other lists

8: if £1[w].id & L; then . . _
o b[re‘]ak J > £1[w].id does not qualify Fig. 5. Segmentation gfhones for IJP (Seg2= 0).
10: Let k£ be the first entry forl, [w].id in L;

11:

while L',l[w].id = [,j [k‘]ld and [,];1 [pjfl].t > [,j [k‘]t
do . inverted-indexés Hence the algorithm proceeds without hav-
12: ke k+1 > align £;-1[p;-1].t and £;[k].t  ing to actually sort the participatinigverted-indexes

ﬁ if Lé[rzgglid # L;[k].id then > £1]u] does not qualify (ii) Variable predicate evaluation: The second step of the
15: else p, = k > set the pointer forz; NP algorithm evaluates the variable predicates inS,, over
16: if £1[w] qualifiesthen the set of candidate trajectoriés generated in the first step.
17: U«—UULiw].id > L1 [w] satisfy allSy  For a fixed predicate its correspondimgerted-indexcontains

18: if |3:1| =0 thenU > pattern does not have variable predicatg| calls that satisfy it. Howevewnariable predicates can be
19: nswer < bound to any region, so one would have to look atralerted-

20: else > variable predicate evaluation L0 - . . -
210 Answer — 0 indexeswhich is not realistic. We will again need one list per
22: for kK — 0 to |U] do eachvariable predicate (termedariable-lis§, however such
23: Retrievephone;q associated with/ variable-listsare not pre-computed (like theverted-indexés
24 Build segmentsSeg; for phoneid Rather they are created on the fly using the candidate calls
22; \(]soeirr:?/gti:/bigﬁglz lists filtered from the fixgd pre_dicate evalu_ation step.
27: if phone;q qualifiesthen To populate avariable-list for a variable predicateP; €
28: Answer — Answer U phone;q > Add phone;q to S, we compute the possible assignments fariable P;
the answer set by analyzing theinverted-indexfor each candidate call. In

particular, we use the timestamps in a candidate call tdtifen
which portions of the call can be assigned to this particular
record of list£,, usingpas,, namely userithone;,10). Since variablepredicate. An example is shown in Figure 5, using the
it is not from phones it cannot be an answer so pointey;, candidate trajectoryhones from Figure 4. From the previous
advances to the next recorgdhpnes,18). Now pointers in all step we know thaphone, satisfies the fixed predicates at the
lists point to records ophones. However, phones,18)inpy, following regions: (/,18), (D,21), (M,25) (shown in bold
does not satisfy the pattern since its timestamp shouldvioll in the inverted-indexof phones). Using the pointers from
the timestamp (21) ophones in D. Hencep,,, is advanced the inverted-indexeof the previous step, we know where
to the next record, which happens to hgdnes,25). Again the matching regions are in theverted-indexof phones.
we have a record from the same ugéone, in all lists and As a result,phone; can be conceptually partitioned is three
this occurrence ophones satisfies the temporal constraintsegments fegl, Seg2, Seg3) shown in Figure 5. Note that
and thus the patter§. As a result, usephones is kept as a Seg2 is empty since there is no region betweéd,(8) and
candidate inU. The processing moves to the next record ifD,21).
P, Namely phones,25). However, this record cannot satisfy These calls segments are used to createdhniable-listsby
the patternS so it is skipped. Eventually,;, will points to identifying the possible assignments for evegriable Since
(phones,10) which causes ligip to move to phones,5). User a variables assignments need to maintain the pattern, each
phones cannot satisfy the temporal constraint, so it is skippadariable is restricted by the two fixed predicates that appear
from list £Lp and the algorithm terminates since one of thbefore and after thevariable in the pattern. Allvariables
lists reached its end(] between two fixed predicates are first grouped together. Then
In cases where a spatial predicaie in S is defined for every group ofvariablesthe corresponding call segment
by a polygon region, then the above join algorithm has {the segment between the fixed predicates) is used to generat
materialize a sorted inverted index from the setiroferted- the variable-lists for this group. Grouping is advantageous,
indexessatisfying the topological operatop; over the poly- since it can createariablelists for multiplevariablesthrough
gon of P;. However, since records in each set of regiorthe same pass over the trajectory segments. Moreover, it
satisfying the spatial predicat®, are already ordered by ensures that theariablesin the group maintain their order
(phone;iq,timestamp), the sort order can be materialized a@onsistent with the patter§.
the fly (by feeding the algorithm with the record that has Assume that a group afariable predicates hag members.
the smallestphone;q among the heads of the participatingzach record segment that affects tariablesof this group



Step 1: Qu Qy Qz Algorithm 2 1JP: Temporal Predicate Evaluation

’ ‘ ’ ‘ ’ ‘ Require: QueryS
Ensure: Phones satisfying

Segr: (X,1,3) (1,3,5) ... Segs: (H,23,4) ... 1 f — |Sy| > number of fixed predicates i8
Step 2: Qx Qy Qx
’ (X,1,3) ‘ ’ (1,3,5) ‘ ’ (H,23,4) ‘
Segr: (|,3,T5) S57) . Segs: (8'24;5) temporal predicate is satisfied, in the same way the Algorith
Final Step: @z Qy @z works; (2) another approach is to just use th&-teee to
(X,1,3) (1,3,5) (H23,4) retrieve all records that satisfy the temporal predicate fo
(1,3,5) (8,5,7) (B,24,25) P, when the previous oné;,_; was already evaluated. The
(8,5.7) (D,7,12) drawback of this second approach is that, every time,
is matched, random accesses to thetBee and the inverted
index are performed to retrieve records satisfying the taalp

predicate. If the number of matches fBy_; is high, then the
first approach is better; in the other way, if there are so many
matches forP;_,, therefore not so many random access in
] ] ] ] the Bt-tree and the inverted index, then the second approach
is then streamed through a window of size The firstw  might be better than the first one. Because the first apprsach i
elements of the call segment are placed in the correspondgﬁg]mer and seems to be more efficient most of the times, we

predicate lists for thevariables The first element in the yecided to always perform it when there is a relative tempora
segment is then removed and the window shifts by ORfedicate.

position. This proceeds until the end of the segment is gch
In the above example there are two groupsvafiables the
first consists ofvariable “@z” (i.e., w=1), while the second

Fig. 6. Variable list generation folJP.

3) Predicate ConstraintsThe evaluation of predicate con-
straintsC inside a queryQ is performed as a post filtering
: e . ; step after the patter§ evaluation. The intuition is that the
group has a single memben” (w=1). Figure 6 depicts the g, a1 yredicates irs will greatly reduce the number of

first three steps in theariable list generation for the group of candidatephone;; which need to be checked to match the
variables*?™” and “@z”. This group streams through segmenf . ¢ constraints

Segl, since it is restricted on the right by the fixed predicate . . . .
: S . say that the inverted indexes contain both entries for
M in patternS. Each list is shown under the appropriate .
. . . N who made the call as well who received the call
variable A differentvariablelist will be created for the second
group with variable “@z", since this group streams through
segmentSeg3 (the second@z” variableis restricted by fixed VI. EXPERIMENTAL EVALUATION

predicatesD andM_). ] o ] o In this paper, we consider two real CDR databases. The first
The generatedariable-listsare then joined in a way similar one is 3 CDR database from an urban environment (hereafter
to the previous step. Because weriable-listsare populated \yrhan Databaspand the second one is a CDR database at a
by call segments coming from the same ugéofic; IN OUr  giate |evel (hereafteBtate Databage (The first one is not a
example) the join criteria checks only if the ordering oftpel  gpset of the second one.) Hopping was not enabled in either
S is obeyed. In addition, if the pattern contaieziableswith ¢ the gatabases. The two databases differ regarding beth th
the same name (likeiz) the join condition verifies that they n,mper of BTSs that the infrastructure have and the spatio-
are matched to the same region and time interval. temporal information available for each user (number ofscal
2) Temporal Predicate EvaluationiThe IJP algorithm can frequency of calls, density of BTSs, etc.). This informatie
easily support explicit temporal constraints (assignedh® to a large extent affected by the sociocultural charadiesis
spatial predicates) by incorporating them as extra camhti of the regions where the data was collected. Also, these
in the join evaluations among the list records. There areethrdifferences deeply affect the number and characterisfitiseo
cases for a time predicate: (1) interval tirft ... : t,); (2) patterns that can be detected.
shapshot time.; or (3) relative timet,.. Regarding theUrban Database cell phone CDRs for
For the interval and snapshot temporal predicates, the B300,000 anonymized residential customers from a single
tree for the region associated to the region in the spatigdrrier for a period of six months were obtained from a
predicate are accessed to return all entries that satigfy thetropolitan area. In order to select urban users from our
temporal predicate. For the interval, all records that atkiw sample, all phone calls from a set of BTSs within the city
the t¢.om and ty, included, are returned, while for thewere traced over a 2-week period (sampling period) and the
snapshot, all records that match thetemporal predicate are (anonymized) numbers that made or received at least 3 calls
retrieved. per day from those BTSs were selected. Although the sefectio
For the relative time predicate, there are two possibtd subscribers was carried out in an urban environment, they
strategies: (1) the straightforward way to process it isemvh could freely move anywhere within the nation. In total there
the spatial predicate is being evaluated, check whether #re around 50,000,000 entries in the database considering



voice, SMS and MMS. The BTS database contained tlegaluate patterns with larger number of predicates ineseas

position of 30,000 towers. substantially. This is due to the fact that more predicates h
As for the State Databasewe considered 500,000 usergo be matched to an instance of the phone call.

from a state for a period of six months. No selection of users

was made, i.e. all users that made or received a phone ¢llPatterns with Spatial Predicates

fror_n any BTS of that particular state during a six month g st set of experiments evaluates patterns with differe
period were part of the database. In total there were cloggmper of spatial predicates (from 4 to 16 patterns). Figure
to 30,000,000 entries in the database. The BTS datab@fgys the total number of I/O (first row) and query runtime
contained the position of 20,000 towers. time (second row). For this kind of queries only the inverted
We randomly sampled 500 phone users from each databgifsyes associated with the predicates in the pattern are
to generate sample queries. For each sample phone userWessse. Increasing the number of spatial predicatessises
then randomly selected fragments in its history of calls i@e number of I/0 since more entries in each inverted indexes
generate queries with 4, 8, 12 and 16 predicates. Henc& thgsqociated to spatial predicates are retrieved. Constiguen
queries return at least one entry in their respective da@ha e (otal time to join those indexes also increases. On the

For each experiment we measured the average query runniggraqe 306 and 41 phone users match foStiageandUrban
time and total number of 1/O for 500 queries. The query runyianases respectively.

ning time reports the average computational cost (as tlaé tot
wall-clock time, averaged over a number of executions) for
500 queries. To maintain consistency, we set page size ®qual

(a) State Database (b) Urban Database
T T T 18

T T T T
1JP w—

to 4KBytes for indexes and data structures. All experimentsg * e g
were run on a Dual Intel Xeon E5540 2.53GHz running Linux £ * ?
2.6.22 with 32 GBytes memory. 2= 2w
For evaluation purposes, we compared the algorithm = * S
against a modified implementation of tk&P common subse- ® 4 8 12 16 PR ET——
guence matching algorithm. We modified tK¥P algorithm Number of predicates Number of predicates
(a) State Database (b) Urban Database

in a way that it can handle variables, temporal predicates |,
and all topological predicates proposed in our languages Th i 65
implementation performs a sequential scanning of the CDR:  °
database in order to find matches to a particular patterryquer §

T T T 11 T T T

1P m 1P m

AVG Query Runtime (s)

AVG Qu
>
o

A. 1JP vs KMP Comparison
4 8 12 16 4 8 12 16

Since the differences in performance betweenkhd and Number of predicates Number of predicates
thelJP are very large, the plots of tH&MP algorithm from all
graphs were supressed in order to preserve details. Instead
describe the results of tH&MP here in this section. The total
number of I/O measured for théMP execution is constant . . .
in both databases since it performs a sequential scanningcofpatterns with Variable Predicates
the phone database. For tBatedatabase the total number of In the second set of experiments we analyze patterns with
I/O is 1,788,384, while for théJrban it is 2,022,020. These 1 and 2 variable predicates. In this set of experiments, we
values correspond to the total number of data disk pages eashdomly selected spatial predicates to be changed toblaria
database has. Comparing these values tdéJfA@execution, the predicates. We increase the number of spatial predicates in
KMP algorithm performs at least 18 times more I/O than the similar way as in the previous experiment, maintaining the
IJP (for patterns with 2 range predicates with a large windowumber of variables to 1 or 2 in the pattern query. For example
size each for theJrban database). This difference is muclpatterns with 8 predicates contain 7 spatial and 1 variable
greater if only spatial predicates are considered. For gi@m predicate for the experiments with 1 variable, and 6 spatial
for patterns with 4 spatial predicates the difference iraltotand 2 variable predicates for the experiments with 2 veem@bl
number of 1/0 is 108 times for th8tatedatabases, and 260 Figure 8 show the performance of th#P algorithm when
times for theUrban database. varying the number of spatial predicates (from 4 to 16) with 1

The query running time of th&MP algorithm on its best variable predicate. The experiments for 2 variables argisho
performance (patterns with 4 spatial predicates forlhgan in Figure 9. The total nhumber of I/O for queries with 4
database) is on average 853 seconds. For the same kingrefdicates is bigger than for queries with more predicates
queries, thelJP spends on average 0.85s per query, makirigr some experiments. This is due to the fact that the phone
it 1000 times faster than th€MP algorithm to complete the database is accessed once there is a match aftetJbhe
same task. Even though the cost related to 1/0 operationsalgorithm evaluated the spatial predicates. This behaigior
constant when increasing the number of predicates for theticed in all the experiments except for tbeban database
KMP algorithm, the running time is not. The total time tdor patterns with 1 variable.

Fig. 7. Total /O and query runtime for spatial predicates
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Fig. 8. Total I/O and query runtime for patterns with 1 valéab

The difference in the total number of I/O from 1 to 2

to 0.02 of its value. For th&rban database, window size of
0.004 selects around 2 BTS, while for 0.02 around 400 BTS
are selected. For th8tatedatabase, 0.02 selects up to 130
BTS due to the fact that the concentration of BTS is not so
dense as in th&Jrban database.

Figure 10 shows the results for queries with 1 range predi-
cate, while Figure 11 for 2 range predicates when varying the
window size of each range predicate. Increasing the window
size of a range predicate increases both the total number of
I/0O and running time. This is because more inverted indexes
associated to the range predicates are retrieved. Havimg ma
more entries in the inverted indexes also increases thamgnn
time since more entries are candidates to be merge-joined
by the IJP algorithm. The same behavior happens when
increasing the number of range predicates from 1 to 2.

(a) State Database (b) Urban Database

.5 T T T T 60
41 | 1P — 55
50
45
40

[ 1P s

variables increases for patterns with 4 predicates. Thikiés
the fact that many more matches occur for 2 spatial predicates
(2 variables) than for 3 spatial predicates (1 variable)ilgvh "
in the other cases, this does not happen mainly because
more spatial predicates (e.g. 7 spatial predicates) filtér o
candidates, and therefore, less accesses associateptotine
database are performed. This behavior also happens for th
guery running time, since less candidates are evaluated.
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D. Patterns with Range Predicates
The same process employed to generate queries with vari-

ables were used to generate patterns with range predicates.

For this set of experiments we generated a query set with
500 queries with 11 spatial predicates and 1 range predicate
and another query set with 10 spatial predicates and 2 range
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predicates. To generate range predicates, we randomiteele E- Patterns with Temporal Predicates

a spatial predicate to be changed to range predicate. Thge ran In the last set of experiments we evaluate patterns with
temporal predicates (Figure 12). Patterns with temporedlipr
We then varied the window size in each dimension from 0.0@4tes were generated in a similar fashion as in with spatial

predicate correspond to the original spatial predicatatlon.



predicates, but here each predicate has both a spatial phdne-call databases. STPS defines a language to express
an interval temporal predicate. The interval values in eaglattern queries which combine fixed and variable spatial
temporal predicate were increased from two days to ten dgy®dicates with explicit and implicit temporal constrainiVe
covering the original timestamp of the call. Therefore,heaalescribed the STPS index structures and algorithm in order
pattern returns at least one match in the database. The quergfficiently process such pattern queries. The experiahent
evaluation is performed in two different ways: the first noeth evaluation shows that the STPS can answer spatio-temporal
(SEQ validates the temporal predicate while processing eaphtterns very efficiently even for very large mobile phoadi-c
entry in the inverted index for a particular spatial preti¢céhe databases. Among the advantages of the STPS is that it can be
second method NIDEX) employs the B+-tree to first evaluateeasily integrated in commercial telecommunication dagaba

the temporal predicate for each spatial predicateddNDEX, and also be implemented in any current commercially avigilab
entries that satisfy the temporal predicate are furthetedor RDBMS. As a next step we are extending the STPS to evaluate

by (phone;q, timestamp) to be further processed by théP
algorithm.
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Fig. 12. Total I/O and query runtime for patterns with tengd@redicates

12
The total number of I/O for th6sEQ method is constant[ ]

since all pages in the inverted indexes are retrieved. On lﬁ%
other hand, the number of 1/O for thRDEX is much smaller
than the SEQ approach since only entries that satisfies tHe5]
temporal predicates are retrieved. Considering the rtgmniHG]
time for both methods, eventhough t&&Q performs much
more 1/O operations than th&lIDEX methods, the way they [17]
operate are different: th8EQ method accesses pages in zig]
sequential way while th&NDEX method accesses first page
in random order (B+-tree index) and then data pages [ir9]
sequential order. Furthermore, INDEX, entries that satisfy
the temporal predicate have to be further ordered beforggbe
reported to thelJP algorithm. Increasing the interval of a[21]
temporal predicate also increases the running time of tp%

e

INDEX method since the number of entries needed to be sor
increases substantially.

[0l

[23]

VII. CONCLUSIONS ANDFUTURE WORK [24]

The ability to detect and characterize mobility patterriagis [25]
CDRs opens the door to a wide range of applications rangin%
from urban planning to crime or virus spread. Neverthelbss, (28]
spatio-temporal query systems proposed so far cannot&xpre
the flexibility that such applications require. In this pape
have introduced the Spatio-Temporal Pattern System (STPS)
for processing spatio-temporal pattern queries over raobil

continuous pattern queries for streamming data.
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