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Abstract— Call Detail Record (CDR) databases contain mil-
lions of records with information about cell phone calls, including
the position of the user when the call was made/received. This
huge amount of spatiotemporal data opens the door for the
study of human trajectories on a large scale without the bias
that other sources (like GPS or WLAN networks) introduce
in the population studied. Also, it provides a platform for the
development of a wide variety of studies ranging from the
spread of diseases to planning of public transport. Nevertheless,
previous work on spatiotemporal queries does not provide a
framework flexible enough for expressing the complexity of
human trajectories. In this paper we present the Spatiotemporal
Pattern System (STPS) to query spatiotemporal patterns in very
large CDR databases. STPS defines a regular-expression query
language that is intuitive and that allows for any combination
of spatial and temporal predicates with constraints, including
the use of variables. The design of the language took into
consideration the layout of the areas being covered by the
cellular towers, as well as “areas” that label places of interested
(e.g. neighborhoods, parks, etc) and topological operators. STPS
includes an underlying indexing structure and algorithms for
query processing using different evaluation strategies. Afull
implementation of the STPS is currently running with real, very
large CDR databases on Telef́onica Research Labs. An extensive
performance evaluation of the STPS shows that it can efficiently
find complex mobility patterns in large CDR databases.

I. I NTRODUCTION

The recent adoption of ubiquitous computing technologies
by very large portions of the population has enabled – for the
first time in human history – to capture large scale spatio-
temporal data about human motion. In this context, mobile
phones play a key role as sensors of human behavior because
they typically are owned by one individual that carries themat
(almost) all times and are nearly ubiquitously used. Hence,it
is no surprise that most of the quantitative data about human
motion has been gathered via Call Detail Records (CDRs) of
cell phone networks.

When a cell phone makes or receives a phone call the
information regarding the call is logged in the form of a CDR.
This information includes, among other data, the time and
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date of the connection and the tower used, which gives an
indication of the geographical position of the user. Such data
is very rich and has been used recently for several applications,
such as study of the user’s social network [1], [2], [3], human
mobility behaviors [4], [5], [6], [7], and cellular network
improvement [8].

The volume of data generated by a given operator in the
form of CDRs is huge and contains very valuable spatio-
temporal information at different levels of granularity (e.g.
citywide, statewide, nationwide). This information is relevant
not only for the telecommunication operator but also is the
base for a broader set of applications with social connotations
like commuting patterns, transportation routes, concentrations
of people, etc. The ability to efficiently query CDR databases
in search of spatio-temporal patterns is key to the development
of smart cities. Nevertheless, commercial systems available
to telecommunication operators today cannot handle this kind
of spatio-temporal processing. One possible way to analyze
such patterns is to perform sequential scanning of the whole
database (or call records) and, for each one, check it using
a subsequence matching like algorithm against the query
pattern. Such simple approach is computationally extremely
expensive due to the amount of data to be processed. Another
problem of such approach is the fact that no information
about the temporal dimension (e.g. between two given days
or between two given hours) or spatial properties (e.g. in a
given neighborhood, near a given spot, intersecting a given
area) are considered to process the database.

Taking into consideration the large volume of data and the
current implementation of commercial systems for telecom-
munication providers, one effective way to support such
pattern queries is to provide the current systems with some
indexes and algorithms to efficiently process such spatio-
temporal patterns. One aspect that has to be considered is that
such commercial systems are in its majority implemented on
top of Relational Database Management System (RDBMS).
Therefore, using its infrastructure such as tables, indexes
(e.g. inverted indexes and B-trees), merge-join algorithms, and
so on, is, in general, straightforward. Another aspect to be



considered is using the same operational CDR databases with
the current systems. This issue become important when dealing
with large CDR databases since duplicating/migrating to a
different database schema can be very expensive.

In this paper we present the Spatio-Temporal Pattern System
(STPS) to query spatio-temporal patterns in CDR databases.
The STPS is designed to express mobility pattern queries with
a regular expression-like language that allows to contain vari-
ables over the query space regions. STPS includes lightweight
index structures that can be easily implemented in most
commercial RDBMS. We present an extensive experimental
evaluation of the proposed techniques using two real CDR
databases. The experimental results reveal that the proposed
framework is scalable and efficient under various scenarios.
Our proposed system is up to two orders of magnitude faster
than a base line implementation, making the STPS a very
robust approach for querying and analyzing very large phone-
call databases. A fully operational prototype is implemented
and running on Telefónica Research Labs.

Some of the ideas proposed in this paper were first in-
troduced in one of previous work for trajectorial archives
[9]. This paper differs from our previous work in several
aspects: (1) the STPS system is proposed for CDR databases,
while [9] works only for trajectorial archives; (2) the spatio-
temporal pattern language proposed in this paper, as well as
the algorithms and structures to evaluate such patterns, take
into consideration the behavior of mobile phone users, while in
our previous work they only applies for trajectorial data where
the position is constant monitored and stored in the archives;
(3) another difference related to the language is that here
the spatio and temporal predicates are more important when
defining patterns, while in [9] the sequence and repetition of
predicates are more relevant; (4) the last major difference
is related to the space domain. in this paper we use the
mobile framework to specify the possible predicates along
with topological operators that can be specified in the query
patterns, while in [9] the space domain is created using a non-
overlapping discretization of the space domain. Each trajectory
is then converted to this representation to further instantiate
the index structures in order to support efficiently evaluation
of trajectories. More details on the similarities and differences
of the STPS and our previous work are emphasized in the next
sections.

The remainder of the paper is organized as follows: Section
II discusses the related work; Section III provides some basic
descriptions on the data and infrastructure to understand this
paper; Section IV provides the basic definitions and formal
description of the mobility query language; The proposed
system is described in details in Section V and its experimental
evaluation appears in Section VI; Section VII concludes the
paper.

II. RELATED WORK

Infrastructures for querying spatio-temporal patterns have
already been studied in the literature in different contexts,

mainly for: (1) time-series databases; (2) similarity between
trajectories and (3) single predicate for trajectory data (GPS).

Pattern queries have been used in the past for querying
time-series using SQL-like query language [10], [11], or
event streams using a NFA-based evaluation method [12];
however, the environment in these works is different than the
CDRs considered in this paper. Our work differs from these
solutions since our framework provides a more rich language
to specify and evaluate patterns. Topological, variables and
more complex patterns can be specified and evaluated in an
efficient way, while in those previous this is not possible. For
moving object data, patterns have been examined in the context
of query language and modeling issues [13], [14] as well as
query evaluation algorithms [15], [16].

Similarity search among trajectories has been also well
studied. Work in this area focuses on the use of different
distance metrics to measure the similarity between trajectories.
Examples include [17], [18], [19], [20]. Non-metric similarity
functions based on the Longest Common Subsequence (LCS),
are examined in [21]. [18] proposes to approximate and index
a multidimensional spatio-temporal trajectory with a low order
continuous Chebyshev polynomial which can then lead to
efficient indexing for similarity queries [19].

Single predicate queries for trajectory data, like Range and
NN queries, have been well studied in the past (e.g. [22], [23]).
A query is expressed in those works by a single range or
NN predicate. Further constructions to build a more complex
query, e.g. a sequence of combination of both predicates,
is not supported in those works. In [15] it is examined
incremental ranking algorithms in the case of simple spatio-
temporal pattern queries. Those queries consist of range and
NN predicates specified using onlyfixed regions. Our work
differs in that we provide a more general and powerful query
framework where queries can involve both fixed andvariable
regions as well as variables, negations, topological operators,
temporal predicates, etc, and explicit ordering of the predicates
along the temporal axis. In [16], aKMP-based algorithm
[24] is used to process patterns in trajectorial achieves. This
work, however, focuses only on range spatial predicates and
cannot handleexplicit and implicit temporal ordering of the
predicates. Furthermore, this approach on evaluating patterns
is effectively reduced to a sequential scanning over the list of
trajectories stored in the repository: each trajectory is checked
individually, which becomes prohibitive for large trajectory
archives. In our experiments (Section VI) we show that the
KMP approach to evaluate patterns defined using our proposed
pattern language is very inefficient.

In previous approaches, to make the evaluation process more
efficient, the query predicates are typically evaluated utilizing
hierarchical spatio-temporal indexing structures [25]. Most
structures use the concept of Minimum Bounding Regions
(MBR) to approximate the trajectories, which are then indexed
using traditional spatial access methods, like the MVR-tree
[26]. These solutions, however, are focused only on single
predicate queries. None of them can be used for efficient
evaluation of flexible pattern queries with multiple predicates,



like our solution.
Although related to [9], the STPS was designed for large

CDR databases, while the first for trajectorial achieves. In
[9] we proposed a pattern language where repetition, optional
predicates and sequence can be specified. Also, distance based
constraints (e.g. “find trajectories that were as close as possible
to the LAX airport”) can be added to the query. Trajectories
are “fragmented” into segments defined by partitioning the
space domain in non-overlapping regions. Then indexes are
built using those fragments and to declare the pattern language.
While this approach has its advantages, this preprocessing
makes the framework static. If a new language is needed,
the whole trajectorial archieve has to be processed again and
the indexes have to be constructed again. Other solutions are
also feasible but most of them require that a merge-algorithm
be executed and/or a verification steps be performed. In this
paper we do not have this drawback since CDR databases
is provided using an underlying cell phone network and
our proposed language supports topological, cell-based and
“constants” (defined over a set of predefined cells) predicates.
Furthermore, our work emphasis in temporal and topological
predicates that are more relevant for mobile phone networks
while in [9] we focus on patterns that contain repetitions,
wild-cards predicates, optional operators, and distance-based
contraints, which are more relevant for trajectorial archives.

The query language we present in this paper, designed
to capture the complexity of human trajectories for massive
amounts of mobile phone-call data, is, to the best of our
knowledge, the first of its kind.

III. I NFRASTRUCTURE FORDATA ACQUISITION

Cell phone networks are built using a set of base transceiver
stations (BTS) that are in charge of communicating cell phone
devices with the network. The area covered by a BTS is called
a cell. A BTS has one or more directional antennas (typically
two or three, covering 180 or 120 degrees respectively) that
define a sector and all the sectors of the same BTS define the
cell. At any given moment in time, a cell phone is covered
by one or more antennas. Depending on the network traffic,
the phone selects the BTS to connect to. The geographical
area covered by a cell depends mainly on the power of the
individual antennas. Depending on the population density,the
area covered by a cell ranges from less than 1 Km2 in dense
urban areas to more than 5 Km2 in rural areas. Each BTS
has a latitude and longitude that indicate where is located.
For simplicity, we assume that the cell of each BTS is a 2-
dimensional non-overlapping region and use Voronoi diagrams
to define the covering area of the set of BTSs considered.
Figure 1 presents on the left a set of BTSs with the original
coverage of each cell, and on the right the simulated coverage
obtained using Voronoi. While simple, this approach gives
us a good approximation of the coverage area of each BTS.
Also, the location of mobile users connected to BTSs are
approximated using those Diagrams. In practice, to build the
“real” diagram of coverage, one has to consider several factors

Fig. 1. (left) Original coverage areas of BTSs and (right) approximation of
coverage areas by Voronoi diagram.

in the mobile network, mainly the power and position of each
antenna.

CDR databases are generated when a mobile phone con-
nected to the network makes or receives a phone call or uses
a service (e.g., SMS, MMS, etc.). In the process, and for
invoice purposes, the information regarding the time and the
BTS where the user was located when the call was initiated is
logged, which gives anindicationof the geographical position
of a user at a given moment in time. Note that no information
about the exact position of a user in a cell is known. Also, it
is possible to store for a given call not only the initial BTS,
but also the set of BTSs used during the length of the call
(BTS hopping option). This allows for a richer representation
of the mobility of the users.

In our system we use the set of attributes common to all
CDR databases. These include: (1) the phone numberphoneid-
O making the call; (2) the phone numberphoneid-D receiving
the call; (3) the type of the service (voice: V, SMS: S, MMS:
M, etc.); (4) the BTS identifier (BTSid-O) on whichphoneid-
O connected to make the call; (5) the BTS identifier (BTSid-D)
on whichphoneid-D connected to receive the call; (6) date and
time (timestamp) that started the connection betweenphoneid-
O andphoneid-D using BTSid-O and BTSid-D, respectively;
and (7) the total duration of the calldur between the two
parties for BTSid-O and BTSid-D; The BTS identifier will
represent the position of the phone number that is a client
of the provider keeping the CDR database. If both numbers
are part of the provider two BTSs will be present, one
indicating the position of the originating number and another
one indicating the position of the destination number. When
the BTS hopping option is enabled, a new CDR row is
created every time either users change their positions. When
the hopping is not available, only a single CDR is stored to
represent the initial position ofphoneid-O andphoneid-D for
the total duration of the call.

TABLE I

A SET OFCDRS REPRESENTING4 DIFFERENT CALLS.

timestamp dur. phoneid-O phoneid-D BTSid-O BTSid-D type

1123212 3 4324542 4333434 231 121 V
1123215 2 4324542 4333434 232 121 V
1123217 5 4324542 4333434 234 121 V
1123235 2 4324542 5334212 235 231 V
1123237 4 4324542 5334212 231 233 V
1124113 3 4333434 4324541 238 343 V
1124116 4 4333434 4324541 239 231 V
1124116 1 5334212 4333434 451 239 S



Q := (S [
⋃
C])

S := {P1.P2., ..., .Pn}, |S| = n

Pi := 〈opi,Ri[, ti]〉
opi := disjoint|meet|overlap|equal|
inside|contains|covers|coveredBy

Ri ∈ {Σ ∪ ∆ ∪ Γ}
ti := (tfrom : tto) | ts | tr

Fig. 2. The STPS Pattern Query Language.

Table I shows an example for 4 different calls where users
change their locations during the call. In this example the
provider storing the CDR database is all the same and the
option of BTS hopping is enabled. The phone number 4324542
makes a phone call at timestamp 1123212 to 4333434 starting
in BTS 231. Then the user 4324542 moves from BTS 231
to 232 after 3 minutes of starting the call, generating another
input in the database. After 2 miutes, user 4324542 moves to
BTS 234 staying there for 5 minutes when the call finishes.
The user 4333434 stays connected to the same BTS 121 during
the call, which does not necessary means that the user stays
on the same place, but connected to the same cell 121 for
the whole period of the call. If the BTS hopping was not
enabled, the first three entries would have been presented as
just one, with just the initial BTS 231 and a total duration of10
minutes. The second call in the table represents the call made
from 4324542 to 5334212, and the third one from 4333434
to 4324541. The eigth entry of the table details an SMS sent
from 5334212 to 4333434 when they were connected to BTSs
451 and 239, respectively.

IV. T HE STPS PATTERN QUERY LANGUAGE

The previous section commented how the spatio-temporal
information collected by the CDR databases can have two
different formats: the first case just collects the BTSs where
the user initiated the call and in the second case the whole
trajectory during a call is stored (at a BTS level). In general
the first case can be considered a subset of the second one.
The STPS language is valid for both cases; i.e. we can
query for patterns using records for the same call or different
calls. This is only possible because we can “enable” temporal
predicates for each spatial predicate and, therefore, restrict
that user “movements” are associated to a single call. In the
next subsections we describe the syntax of the STPS pattern
query language and its components: the spatial predicates,the
temporal predicates, and the constraints.

A. STPS Language Syntax

A pattern queryQ is defined asQ = (S [
⋃
C]), whereS is

a sequential pattern andC is an optional set of constraints. A
phoneid matches the pattern queryQ if it satisfies bothS and
C. A sequential patternS is expressed as a path expression
of an arbitrary numbern of predicatesS = {P1.P2., ..., .Pn}.
Figure 4 details formally the syntax of the STPS language.

Each spatio-temporal predicatePi is defined by a triplet
Pi = 〈opi,Ri[, ti]〉, whereopi andRi represent a topologi-
cal relationship and a geographical area respectively, andin

combination the spatial part of the predicate, andti represents
the temporal part of the predicate. The operatoropi describes
the topological relationship that the spatial regionRi and
an instance in the database must satisfy over the (optional)
temporal predicateti.

B. Spatial Predicates

The cells, that represent the covering areas of each BTS,
are represented using Voronoi diagrams. Such set of Voronoi
diagrams is represented byΣ in our language. In the following
we use capital letters to represent the set ofBTS, Σ =
{A, B, C, ...}. In our pattern language, regions (e.g. districts,
neighborhoods, areas of interest, etc) can be defined by a set
of BTSid, i.e. although the ares represented byΣ are fixed, on
top of that geographical maps with different granularity can
be defined. For instance, one can define the downtown area
by DOWNTOWN = {D, E, H} andMALL = {G}. The
sameBTSid can be assigned to multiple regions and not all
BTS have to be included in each geographical map.

In Pi, the areaRi can be one of the four following region
specifiers: a particularBTSid ∈ Σ; an aliasA ∈ ∆ defined
by a set of one or moreBTSid; a polygon defined by a set
of pairs< longitude, latitude >; or a variableV ∈ Γ.

We have used the eight topological relationships:disjoint,
meet, overlap, equal, inside, contains, coversand coveredBy,
for opi described in [13]. Given an instance of theCDR

databaseCDRj and a regionRi, the operatoropi returns
a boolean valueB ≡ {true, false} whether theCDRj and
the regionRi satisfy the topological relationshipopi (e.g., an
Insideoperator will betrue if the user associated withphoneid

wassometimeinside regionRi during timeti). For simplicity
in the following we assume that the spatial operator is set to
Insideand it is thus omitted from the query examples.

A predefined region (i.e.,Ri ∈ Σ∪∆) is explicitly specified
by the user in the query predicate. In contrary, avariable de-
notes an arbitrary region and it is denoted by a lowercase letter
preceded by the “@” symbol (e.g. “@x”). A variable region
is defined using symbols inΓ, whereΓ = {@a, @b, @c, ...}.
Unless otherwise specified, avariable takes a single value
(instance) fromΣ (e.g.@a=C); however, in general, one can
also specify the possible values of avariable as a subset
of Σ (e.g., “any city district with museums”). Conceptually,
variableswork as placeholders for explicit spatial regions and
can become instantiated (bound to a specific region) during the
query evaluation in a process similar to unification in logical
programming.

Moreover, the samevariable “@x” can appear in several
different predicates of patternS, referencing to the same
region everywhere it occurs. This is useful for specifying
complex queries that involve revisiting the same region many
times. For example, a query like “@x.B.@x” finds users that
started from some region (denoted by variable “@x”), then at
some point passed by regionB and immediately after they
visited the same region they started from.



C. Temporal Predicates

A predicatePi may include an explicit temporal constraint
ti in the form of: (a) interval time(tfrom : tto) where
tfrom ≤ tto; (b) snapshot timets; (c) or (d) relative time
tr = ti − ti−1 to a previousti−1 spatio-temporal predicate
Pi−1. This implies that the spatial relationshipopi between
a CDRi and regionRi should be satisfied in the specified
time ti (e.g. “passed by areaB between 10am and 11am”). If
the temporal constraint is missing, we assume that the spatial
relationship can be satisfied any time in the duration of a call.
For simplicity we assume that if two predicatesPi, Pj occur
within patternS (wherei < j) and have temporal constraints
ti, tj, respectively, then these intervals do not overlap andti
occurs beforetj on the time dimension.

D. Pattern Constraints

Spatio-temporal predicates however cannot answer queries
with constraints (for example, “best-fit” type of queries –
like NN and the related – that find user which best match
a specified pattern). This is because topological predicates are
binary and thus cannot capture distance based properties of
the users. The optionalC part of a general queryQ is thus
used to describe distance-based or other constraints amongthe
variablesused in theS part. A simple kind of constraint can
involve comparisons among the used variables (e.g.,@x!=@y).
More interesting is the distance-based constraint which have
the form(AGGR(d1, d2, ...); θ) and is described below.

E. STPS Language Examples

The use ofvariablesin describing both the topological pred-
icates and the numerical conditions provides a very powerful
language to query patterns. To describe a query, the user can
use fixed regions for the portions of the users movement where
the behavior should satisfy known (strict) requirements, and
variablesfor portions where the exact behavior is not known
(but can be described by a sequence ofvariables and the
constraints between them). The ability to use the samevariable
many times in the query allows for revisiting areas, while the
ability to refer to thesevariables in the distance functions
allows for easy description ofNN and related queries.

3 COMPEX EXAMPLES HERE EXAMPLES ARE
NEEDED in this section, EITHER IN A SUBSECTION
OR IN THE TEXT.

V. QUERY EVALUATION SYSTEM

In order to efficiently evaluate pattern queries we use three
index structures: one R-tree for the regions; one B+-tree for
eachBTSid; and oneinverted-indexfor eachBTSid. Along
with these indexes we also store allCDR in an archive,
grouped byphoneid and ordered bytimestamp, as shown in
Figure 3. The R-tree is used when there is a spatio-temporal
predicate inS that is a polygon type. In this case, the R-tree is
evaluated in order to return the set ofBTSid that satisfies the
topological operator that contains the polygon. In case where
the result set contains more than oneBTSid, then entries in
eachBTSid can be merged to form a unique list with all

entries to be further processed by our algorithm. This is only
possible because entries in each listBTSid has its entries
ordered by (phoneid,timestamp) key.

For eachBTSid, two index structures are built: one B+-
tree to organize entries by the temporal attributetimes-
tamp, and oneinverted-indexwhere entries are ordered by
(phoneid,timestamp). The B+-tree may be used to prune
entries that do not satisfy a temporal predicate. The strategy of
using or not the B+-tree will depend on the type of temporal
predicate that is being evaluated (more discussion later inthis
section). Theinverted-indexof a givenBTSid stores all call
records that were connected toBTSid in sometime during
the call. In theinverted-indexeach entry inBTSid is a record
that contains aphoneid, the timestampand duration during
which the user was inside regionBTSid, and a pointer to the
CDR record associated to the call in the CDR archive. If a
user connects to a givenBTSid multiple times in different
timestamps, we store a record for each uses. Records in
an inverted-indexare ordered first by thephoneid and then
by timestamp. For example, in Figure 3 theinverted-index
entry for the regionD is {4324542,10-01-09 10:23:45,35;
4324542,10-01-09 10:59:12,01; ...}. Note that records from
an inverted-indexpoint to the corresponding CDR call in
the CDR archive. For example, the record 4324542,10-01-09
10:23:45,35 in theinverted-index14233 contains a pointer to
the CDR record of4324542.

For evaluating pattern queries we propose theIndex Join
Pattern (IJP) algorithm. This algorithm is based on amerge-
join operation performed over theinverted-indexescorrespond-
ing to every fixed predicate in the query patternS.

A. The Index-Join Pattern Algorithm (IJP)

To simplify the presentation we first start with the evaluation
of the spatial predicates for a patternS. Later we extend the
discussion to cover queries that in addition contain predicate
constraintsC. Finally we present the incorporation of time
constraints inside the pattern queryQ.

1) Spatial Predicate Evaluation:We start with the case
where the patternS does not contain any explicit temporal
constraints. In this scenario, the pattern specifies the order by
which its predicates (whether fixed or variable) need to be
satisfied. AssumeS containsn predicates and letSf denote
the set off fixed predicates, whileSv denotes the set ofv
variable predicates (n=f+v). The evaluation ofS with the
IJP Algorithm can be divided in two steps:(i) the algorithm
evaluates the setSf using the inverted-indexindex to fast
prune users that do not qualify for the answer;(ii) then the
collection of candidateusers is further refined by evaluating
the set ofSv.

(i) Fixed predicate evaluation: All f fixed predicates in
Sf can be evaluatedconcurrentlyusing an operation similar
to a “merge-join” among theirinverted-indexesLi, i ∈ 1..f .
Records from thesef lists are retrieved in sorted order
by (phoneid,timestamp) and then joined by theirphoneid’s.
Records are pruned using thephoneids andtimestamp. In each
list Li we keep a pointerpi that points to the record currently



Fig. 3. Index framework: (a) BTS R-tree, (b) B+-trees (timestamp), (c) inverted-indexes, and (d) CDR database.

considered for the join. This pointer scans the list starting from
the top.

If the same region appears more than once in the patternS, a
separate pointer traversing thatinverted-indexis used for each
region appearance in the pattern. For example, to process the
patternM.D.M the inverted-indexesof M andD are accessed
using one pointer forinverted-indexLD (pD) and two pointers
for traversinginverted-indexM (pM1

andpM2
). If a phoneid

appears in all of thef inverted-indexesinvolved inS, and their
correspondingtimestampsin all f inverted-indexessatisfy the
ordering of the predicates inS, this phoneid is saved as a
possible solution. The pseudo code is shown in Algorithm V-
A.2.

During the merge-join, there are cases where records from
the inverted-indexcan be skipped, thus resulting in faster
processing. For example, assume that predicatePi ∈ S
(corresponding to theinverted-indexLi) is before predicate
Pj ∈ S (corresponding toLj). Further assume that in listLi

the current record considered for the join has phone identifier
phoner, while in list Lj the current record considered has
phone identifierphones. If phones < phoner, processing in
list Lj can skip all its records withphoneid < phoner. That
is, the pointerpj in list Lj can advance to the first record
with phoneid ≥ phoner. Essentially, predicatePi cannot be
satisfied by any of the phones inLj with smaller phoneid

thanphoner. Since records in ainverted-indexare sorted by
phoneid, Li does not contain phones with smaller identifiers
thanr.

Similarly, when a record from the samephoneid (e.g.
phones) is found in two inverted-indexes(e.g. Li,Lj ), the
algorithm checks whether the correspondingtimestampsof
the records match the order of predicates in the patternS.
Hence aphoneid that satisfiesS should visit the region ofLi

before visiting the region ofLj . If the record ofphones in
Li hastimestampthat falls after the correspondingtimestamp
of phones in list Lj , this record can be skipped inLi,
since it cannot satisfy the query. Sinceinverted-indexesare

LM
pM1
pM2

4324541,91002021312,1
4324542,91001123212,3
4324542,91001123237,5
4324545,91001123337,4

LD

pD 4324541,91002021312,1
4324541,91002021312,1
4324541,91002021312,1

Fig. 4. CDR examples forinverted-indexesLM andLD.

stored in ordered way, advancing ainverted-indexforward to a
specific location stamp byphoneid or by (phoneid, timestamp)
can be easily implemented using an index B+-tree on the
(phoneid,timestamp) composite attribute.

Example: The first step ofIJP algorithm is illustrated using
the example in Figure 4. Assume the patternS in the query
Q contains three fixed (M, D, M ) and twovariablepredicates
(@x, @x), as in:S = {@x.M.D.@x.M}. This pattern looks
for users that first visited some region denoted byvariable@x,
then it visited regionM sometime later (no temporal predicate
is specified here), then regionD and then visited again the
same region@x before finally returning toM . The first step
of the join algorithm uses theinverted-indexfor M andD (LM

andLD). Conceptually,pM1
represents the first occurrence of

M in S (before D) and pM2
the second occurrence ofM

(after D).
The algorithm starts from the first record in listLM , namely

(phone1,10). It then checks the first record in listLD, i.e.,
phonephone2. We can deduce immediately thatphone1 is
not a candidate since it does not appear in the list ofLD.
So we can skipphone1 from theLM list and continue with
the next record there, user (phone2,18). Since (phone2,7) in
list LD has timestamp smaller than (18), listLD moves to its
next record (phone2,21). These two occurrences ofphone2

coincide with the patternM.D of S so we need to check
if phone2 uses again regionM . Thus we consider the first



Algorithm 1 IJP: Spatial Predicate Evaluation
Require: QueryS
Ensure: Phones satisfying fixedSf and variableSv predicates

1: f ← |Sf | ⊲ number of fixed predicates inS
2: for i← 1 to f do ⊲ for eachSf

3: Initialize Li with the cell-list of Pi

4: Candidate SetU ← ∅
5: for w← 1 to |L1| do ⊲ analyze each entry inL1

6: p1 = w ⊲ set the pointer forL1

7: for j ← 2 to f do ⊲ examine all other lists
8: if L1[w].id 6∈ Lj then
9: break ⊲ L1[w].id does not qualify

10: Let k be the first entry forL1[w].id in Lj

11: while L1[w].id = Lj [k].id and Lj−1[pj−1].t > Lj [k].t
do

12: k← k + 1 ⊲ align Lj−1[pj−1].t andLj [k].t
13: if L1[w].id 6= Lj [k].id then
14: break ⊲ L1[w] does not qualify
15: else pj = k ⊲ set the pointer forLj

16: if L1[w] qualifiesthen
17: U ← U ∪ L1[w].id ⊲ L1[w] satisfy allSf

18: if |Sv| = 0 then ⊲ pattern does not have variable predicate
19: Answer← U
20: else ⊲ variable predicate evaluation
21: Answer← ∅
22: for k ← 0 to |U | do
23: Retrievephoneid associated withU
24: Build segmentsSegi for phoneid

25: Generatevariable lists
26: Join variable lists
27: if phoneid qualifiesthen
28: Answer← Answer ∪ phoneid ⊲ Add phoneid to

the answer set

record of listLM usingpM2
, namely user (phone1,10). Since

it is not from phone2 it cannot be an answer so pointerpM2

advances to the next record (phone2,18). Now pointers in all
lists point to records ofphone2. However, (phone2,18)inpM2

does not satisfy the pattern since its timestamp should follow
the timestamp (21) ofphone2 in D. HencepM2

is advanced
to the next record, which happens to be (phone2,25). Again
we have a record from the same userphone2 in all lists and
this occurrence ofphone2 satisfies the temporal constraints
and thus the patternS. As a result, userphone2 is kept as a
candidate inU . The processing moves to the next record in
pM1

, namely (phone2,25). However, this record cannot satisfy
the patternS so it is skipped. EventuallypM1

will points to
(phone3,10) which causes listpD to move to (phone3,5). User
phone3 cannot satisfy the temporal constraint, so it is skipped
from list LD and the algorithm terminates since one of the
lists reached its end.�

In cases where a spatial predicatePi in S is defined
by a polygon region, then the above join algorithm has to
materialize a sorted inverted index from the set ofinverted-
indexessatisfying the topological operatoropi over the poly-
gon of Pi. However, since records in each set of regions
satisfying the spatial predicatePi are already ordered by
(phoneid,timestamp), the sort order can be materialized on
the fly (by feeding the algorithm with the record that has
the smallestphoneid among the heads of the participating

Seg1

(91001123212,231)
(91001123215,232)
(91001123512,234)
(91001124113,231)
(91001124116,231)
(91001124923,233)
(91001141251,232)
(91003091232,245)

Seg2 Seg3

(H,23,4)
(B,24,25)

Fig. 5. Segmentation ofphone2 for IJP (Seg2= ∅).

inverted-indexes). Hence the algorithm proceeds without hav-
ing to actually sort the participatinginverted-indexes.

(ii) Variable predicate evaluation: The second step of the
IJP algorithm evaluates thev variable predicates inSv, over
the set of candidate trajectoriesU generated in the first step.
For a fixed predicate its correspondinginverted-indexcontains
all calls that satisfy it. However,variable predicates can be
bound to any region, so one would have to look at allinverted-
indexes, which is not realistic. We will again need one list per
eachvariable predicate (termedvariable-list), however such
variable-listsare not pre-computed (like theinverted-indexes).
Rather they are created on the fly using the candidate calls
filtered from the fixed predicate evaluation step.

To populate avariable-list for a variable predicatePj ∈
Sv we compute the possible assignments forvariable Pj

by analyzing theinverted-indexfor each candidate call. In
particular, we use the timestamps in a candidate call to identify
which portions of the call can be assigned to this particular
variablepredicate. An example is shown in Figure 5, using the
candidate trajectoryphone2 from Figure 4. From the previous
step we know thatphone2 satisfies the fixed predicates at the
following regions: (M ,18), (D,21), (M ,25) (shown in bold
in the inverted-indexof phone2). Using the pointers from
the inverted-indexesof the previous step, we know where
the matching regions are in theinverted-indexof phone2.
As a result,phone2 can be conceptually partitioned is three
segments (Seg1, Seg2, Seg3) shown in Figure 5. Note that
Seg2 is empty since there is no region between (M ,18) and
(D,21).

These calls segments are used to create thevariable-listsby
identifying the possible assignments for everyvariable. Since
a variable’s assignments need to maintain the pattern, each
variable is restricted by the two fixed predicates that appear
before and after thevariable in the pattern. All variables
between two fixed predicates are first grouped together. Then
for every group ofvariables the corresponding call segment
(the segment between the fixed predicates) is used to generate
the variable-lists for this group. Grouping is advantageous,
since it can createvariable lists for multiplevariablesthrough
the same pass over the trajectory segments. Moreover, it
ensures that thevariables in the group maintain their order
consistent with the patternS.

Assume that a group ofvariablepredicates hasw members.
Each record segment that affects thevariablesof this group



Step 1: @x

Seg1: (X,1,3) (I,3,5) ...

@y @x

Seg3: (H,23,4) ...
Step 2: @x

(X,1,3)

Seg1: (I,3,5) (S,5,7) ...

@y

(I,3,5)

@x

(H,23,4)

Seg3: (B,24,25) ...
Final Step: @x

(X,1,3)

(I,3,5)

(S,5,7)

...

@y

(I,3,5)

(S,5,7)

(D,7,12)

...

@x

(H,23,4)

(B,24,25)

Fig. 6. Variable list generation forIJP.

is then streamed through a window of sizew. The first w

elements of the call segment are placed in the corresponding
predicate lists for thevariables. The first element in the
segment is then removed and the window shifts by one
position. This proceeds until the end of the segment is reached.
In the above example there are two groups ofvariables: the
first consists ofvariable “@x” (i.e., w=1), while the second
group has a single member “@x” (w=1). Figure 6 depicts the
first three steps in thevariable list generation for the group of
variables“?+” and “@x”. This group streams through segment
Seg1, since it is restricted on the right by the fixed predicate
M in patternS. Each list is shown under the appropriate
variable. A differentvariablelist will be created for the second
group with variable “@x”, since this group streams through
segmentSeg3 (the second “@x” variable is restricted by fixed
predicatesD andM ).

The generatedvariable-listsare then joined in a way similar
to the previous step. Because thevariable-listsare populated
by call segments coming from the same user (phone2 in our
example) the join criteria checks only if the ordering of pattern
S is obeyed. In addition, if the pattern containsvariableswith
the same name (like@x) the join condition verifies that they
are matched to the same region and time interval.

2) Temporal Predicate Evaluation:The IJP algorithm can
easily support explicit temporal constraints (assigned tothe
spatial predicates) by incorporating them as extra conditions
in the join evaluations among the list records. There are three
cases for a time predicate: (1) interval time(tfrom : tto); (2)
snapshot timets; or (3) relative timetr.

For the interval and snapshot temporal predicates, the B+-
tree for the region associated to the region in the spatial
predicate are accessed to return all entries that satisfy the
temporal predicate. For the interval, all records that are within
the tfrom and tto, included, are returned, while for the
snapshot, all records that match thets temporal predicate are
retrieved.

For the relative time predicate, there are two possible
strategies: (1) the straightforward way to process it is, when
the spatial predicate is being evaluated, check whether the

Algorithm 2 IJP: Temporal Predicate Evaluation
Require: QueryS
Ensure: Phones satisfyingSf

1: f ← |Sf | ⊲ number of fixed predicates inS

temporal predicate is satisfied, in the same way the Algorithm
works; (2) another approach is to just use the B+-tree to
retrieve all records that satisfy the temporal predicate for
Pi when the previous onePi−1 was already evaluated. The
drawback of this second approach is that, every timePi−1

is matched, random accesses to the B+-tree and the inverted
index are performed to retrieve records satisfying the temporal
predicate. If the number of matches forPi−1 is high, then the
first approach is better; in the other way, if there are so many
matches forPi−1, therefore not so many random access in
the B+-tree and the inverted index, then the second approach
might be better than the first one. Because the first approach is
simpler and seems to be more efficient most of the times, we
decided to always perform it when there is a relative temporal
predicate.

3) Predicate Constraints:The evaluation of predicate con-
straintsC inside a queryQ is performed as a post filtering
step after the patternS evaluation. The intuition is that the
spatial predicates inS will greatly reduce the number of
candidatephoneid which need to be checked to match the
set of constraints.

say that the inverted indexes contain both entries for
who made the call as well who received the call

VI. EXPERIMENTAL EVALUATION

In this paper, we consider two real CDR databases. The first
one is a CDR database from an urban environment (hereafter
Urban Database) and the second one is a CDR database at a
state level (hereafterState Database). (The first one is not a
subset of the second one.) Hopping was not enabled in either
of the databases. The two databases differ regarding both the
number of BTSs that the infrastructure have and the spatio-
temporal information available for each user (number of calls,
frequency of calls, density of BTSs, etc.). This information is
to a large extent affected by the sociocultural characteristics
of the regions where the data was collected. Also, these
differences deeply affect the number and characteristics of the
patterns that can be detected.

Regarding theUrban Database, cell phone CDRs for
300,000 anonymized residential customers from a single
carrier for a period of six months were obtained from a
metropolitan area. In order to select urban users from our
sample, all phone calls from a set of BTSs within the city
were traced over a 2-week period (sampling period) and the
(anonymized) numbers that made or received at least 3 calls
per day from those BTSs were selected. Although the selection
of subscribers was carried out in an urban environment, they
could freely move anywhere within the nation. In total there
are around 50,000,000 entries in the database considering



voice, SMS and MMS. The BTS database contained the
position of 30,000 towers.

As for the State Database, we considered 500,000 users
from a state for a period of six months. No selection of users
was made, i.e. all users that made or received a phone call
from any BTS of that particular state during a six month
period were part of the database. In total there were close
to 30,000,000 entries in the database. The BTS database
contained the position of 20,000 towers.

We randomly sampled 500 phone users from each database
to generate sample queries. For each sample phone user we
then randomly selected fragments in its history of calls to
generate queries with 4, 8, 12 and 16 predicates. Hence, these
queries return at least one entry in their respective databases.
For each experiment we measured the average query running
time and total number of I/O for 500 queries. The query run-
ning time reports the average computational cost (as the total
wall-clock time, averaged over a number of executions) for
500 queries. To maintain consistency, we set page size equals
to 4KBytes for indexes and data structures. All experiments
were run on a Dual Intel Xeon E5540 2.53GHz running Linux
2.6.22 with 32 GBytes memory.

For evaluation purposes, we compared theIJP algorithm
against a modified implementation of theKMP common subse-
quence matching algorithm. We modified theKMP algorithm
in a way that it can handle variables, temporal predicates
and all topological predicates proposed in our language. This
implementation performs a sequential scanning of the CDR
database in order to find matches to a particular pattern query.

A. IJP vs KMP Comparison

Since the differences in performance between theKMP and
the IJP are very large, the plots of theKMP algorithm from all
graphs were supressed in order to preserve details. Instead, we
describe the results of theKMP here in this section. The total
number of I/O measured for theKMP execution is constant
in both databases since it performs a sequential scanning of
the phone database. For theStatedatabase the total number of
I/O is 1,788,384, while for theUrban it is 2,022,020. These
values correspond to the total number of data disk pages each
database has. Comparing these values to theIJP execution, the
KMP algorithm performs at least 18 times more I/O than the
IJP (for patterns with 2 range predicates with a large window
size each for theUrban database). This difference is much
greater if only spatial predicates are considered. For example,
for patterns with 4 spatial predicates the difference in total
number of I/O is 108 times for theStatedatabases, and 260
times for theUrban database.

The query running time of theKMP algorithm on its best
performance (patterns with 4 spatial predicates for theUrban
database) is on average 853 seconds. For the same kind of
queries, theIJP spends on average 0.85s per query, making
it 1000 times faster than theKMP algorithm to complete the
same task. Even though the cost related to I/O operations is
constant when increasing the number of predicates for the
KMP algorithm, the running time is not. The total time to

evaluate patterns with larger number of predicates increases
substantially. This is due to the fact that more predicates has
to be matched to an instance of the phone call.

B. Patterns with Spatial Predicates

The first set of experiments evaluates patterns with different
number of spatial predicates (from 4 to 16 patterns). Figure7
shows the total number of I/O (first row) and query runtime
time (second row). For this kind of queries only the inverted
indexes associated with the predicates in the pattern are
accessed. Increasing the number of spatial predicates increases
the number of I/O since more entries in each inverted indexes
associated to spatial predicates are retrieved. Consequently,
the total time to join those indexes also increases. On the
average 306 and 41 phone users match for theStateandUrban
databases, respectively.
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Fig. 7. Total I/O and query runtime for spatial predicates

C. Patterns with Variable Predicates

In the second set of experiments we analyze patterns with
1 and 2 variable predicates. In this set of experiments, we
randomly selected spatial predicates to be changed to variable
predicates. We increase the number of spatial predicates in
a similar way as in the previous experiment, maintaining the
number of variables to 1 or 2 in the pattern query. For example,
patterns with 8 predicates contain 7 spatial and 1 variable
predicate for the experiments with 1 variable, and 6 spatial
and 2 variable predicates for the experiments with 2 variables.

Figure 8 show the performance of theIJP algorithm when
varying the number of spatial predicates (from 4 to 16) with 1
variable predicate. The experiments for 2 variables are shown
in Figure 9. The total number of I/O for queries with 4
predicates is bigger than for queries with more predicates
for some experiments. This is due to the fact that the phone
database is accessed once there is a match after theIJP
algorithm evaluated the spatial predicates. This behavioris
noticed in all the experiments except for theUrban database
for patterns with 1 variable.
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Fig. 8. Total I/O and query runtime for patterns with 1 variable

The difference in the total number of I/O from 1 to 2
variables increases for patterns with 4 predicates. This isdue
the fact that many more matches occur for 2 spatial predicates
(2 variables) than for 3 spatial predicates (1 variable). While
in the other cases, this does not happen mainly because
more spatial predicates (e.g. 7 spatial predicates) filter out
candidates, and therefore, less accesses associated to thephone
database are performed. This behavior also happens for the
query running time, since less candidates are evaluated.
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Fig. 9. Total I/O and query runtime for patterns with 2 variables

D. Patterns with Range Predicates

The same process employed to generate queries with vari-
ables were used to generate patterns with range predicates.
For this set of experiments we generated a query set with
500 queries with 11 spatial predicates and 1 range predicate,
and another query set with 10 spatial predicates and 2 range
predicates. To generate range predicates, we randomly selected
a spatial predicate to be changed to range predicate. The range
predicate correspond to the original spatial predicate location.
We then varied the window size in each dimension from 0.004

to 0.02 of its value. For theUrban database, window size of
0.004 selects around 2 BTS, while for 0.02 around 400 BTS
are selected. For theStatedatabase, 0.02 selects up to 130
BTS due to the fact that the concentration of BTS is not so
dense as in theUrban database.

Figure 10 shows the results for queries with 1 range predi-
cate, while Figure 11 for 2 range predicates when varying the
window size of each range predicate. Increasing the window
size of a range predicate increases both the total number of
I/O and running time. This is because more inverted indexes
associated to the range predicates are retrieved. Having many
more entries in the inverted indexes also increases the running
time since more entries are candidates to be merge-joined
by the IJP algorithm. The same behavior happens when
increasing the number of range predicates from 1 to 2.
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Fig. 10. Total I/O and query runtime for patterns with 1 range
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Fig. 11. Total I/O and query runtime for patterns with 2 ranges

E. Patterns with Temporal Predicates

In the last set of experiments we evaluate patterns with
temporal predicates (Figure 12). Patterns with temporal predi-
cates were generated in a similar fashion as in with spatial



predicates, but here each predicate has both a spatial and
an interval temporal predicate. The interval values in each
temporal predicate were increased from two days to ten days
covering the original timestamp of the call. Therefore, each
pattern returns at least one match in the database. The query
evaluation is performed in two different ways: the first method
(SEQ) validates the temporal predicate while processing each
entry in the inverted index for a particular spatial predicate; the
second method (INDEX) employs the B+-tree to first evaluate
the temporal predicate for each spatial predicate. InINDEX,
entries that satisfy the temporal predicate are further sorted
by (phoneid, timestamp) to be further processed by theIJP
algorithm.
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Fig. 12. Total I/O and query runtime for patterns with temporal predicates

The total number of I/O for theSEQ method is constant
since all pages in the inverted indexes are retrieved. On the
other hand, the number of I/O for theINDEX is much smaller
than theSEQ approach since only entries that satisfies the
temporal predicates are retrieved. Considering the running
time for both methods, eventhough theSEQperforms much
more I/O operations than theINDEX methods, the way they
operate are different: theSEQ method accesses pages in a
sequential way while theINDEX method accesses first pages
in random order (B+-tree index) and then data pages in
sequential order. Furthermore, inINDEX, entries that satisfy
the temporal predicate have to be further ordered before being
reported to theIJP algorithm. Increasing the interval of a
temporal predicate also increases the running time of the
INDEX method since the number of entries needed to be sorted
increases substantially.

VII. C ONCLUSIONS ANDFUTURE WORK

The ability to detect and characterize mobility patterns using
CDRs opens the door to a wide range of applications ranging
from urban planning to crime or virus spread. Nevertheless,the
spatio-temporal query systems proposed so far cannot express
the flexibility that such applications require. In this paper we
have introduced the Spatio-Temporal Pattern System (STPS)
for processing spatio-temporal pattern queries over mobile

phone-call databases. STPS defines a language to express
pattern queries which combine fixed and variable spatial
predicates with explicit and implicit temporal constraints. We
described the STPS index structures and algorithm in order
to efficiently process such pattern queries. The experimental
evaluation shows that the STPS can answer spatio-temporal
patterns very efficiently even for very large mobile phone-call
databases. Among the advantages of the STPS is that it can be
easily integrated in commercial telecommunication databases
and also be implemented in any current commercially available
RDBMS. As a next step we are extending the STPS to evaluate
continuous pattern queries for streamming data.
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