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Abstract. The Radial Coordinate Visualization (Radviz) technique has
been widely used to effectively evaluate the existence of patterns in highly
dimensional data sets. A crucial aspect of this technique lies in the ar-
rangement of the dimensions, which determines the quality of the poste-
rior visualization. Dimension arrangement (DA) has been shown to be an
NP-problem and different heuristics have been proposed to solve it using
optimization techniques. However, very little work has focused on under-
standing the relation between the arrangement of the dimensions and the
quality of the visualization. In this paper we first present two variations
of the DA problem: (1) a Radviz independent approach and (2) a Rad-
viz dependent approach. We then describe the use of the Davies-Bouldin
index to automatically evaluate the quality of a visualization i.e., its
visual usefulness. Our empirical evaluation is extensive and uses both
real and synthetic data sets in order to evaluate our proposed methods
and to fully understand the impact that parameters such as number of
samples, dimensions, or cluster separability have in the relation between
the optimization algorithm and the visualization tool.

1 Introduction

Visualization tools focus on graphically representing high dimensional and mul-
tivariate data with enough clarity to allow for data exploration. Low dimensional
data sets have traditionally been represented using either simple line graphs or
scatter plots. Nevertheless, in the case of high dimensional data sets, special
techniques for data visualization such as Parallel Coordinates [6], Star Glyphs
[7], Circle Segments [2] or Radviz [12] are used. One of the key problems of these
techniques is the dimension arrangement problem (DA), which evaluates from
an algorithmic perspective which arrangement of the dimensions facilitates more
the comprehension of the data. Ankerst et. al [1] formalized the DA problem and
proved that it is NP-complete similarly to the traveling salesman problem. In
this paper we present two reformalization of it designed to explore a search space
whose non-convexity makes it more probable to find the desired global maxima
(minima). The evaluation of the effectiveness of the arrangement in terms of vi-
sual information is typically carried out by means of human intervention. Most



of the papers focusing on visualization techniques have generally assumed that
the better the solution for the dimension arrangement optimization problem, the
better the visual usefulness of the projected data. In this paper, we present an
initial approach to formally determine such relation, making use of the Davies-
Bouldin index for cluster analysis in order to compute the visual quality of the
information being plotted by Radviz by an extensive empirical evaluation on
synthetic and real datasets.

2 Related Work

There is a wide variety of visualization techniques for multidimensional data
that present a circular arrangements of the dimensions, like Star Coordinates
[7], Circle Segments [2] and Circle Graphs [11]. We focus our analysis on Radviz
[4] which we further explain in Section 3. The problem of dimension arrange-
ment is common for all circular and non-circular visualization techniques and
was formalized by Ankerst et al. as an optimization problem where the similar-
ity between dimensions located next to each other had to be maximized. to be
NP-complete. So far, very little work has been done to automatically understand
(without human intervention) the quality of the visualization for the projected
data. Ankerst et al. evaluate the goodness of their dimension arrangement algo-
rithms by simply stating that the results show clearly superiority. Yang et al. [13]
proposed an interactive hierarchical ordering of the dimensions based on their
similarities, thus improving the manageability of high-dimensional datasets and
reducing the complexity of the ordering. Weng et al. [10] formalize the concept
of clutter in various visualization techniques and present it as a dimension ar-
rangement optimization problem whose solutions will improve the detection of
structure in the projected data. Yang et. al [14] present a visualization technique
where the user can interactively navigate through the dimensions and visually
determine the quality of the re-arrangement. VizRank [9] is one of the few works
that attempts to automate the visual quality evaluation process, by assessing
data projections and ranking them according to their ability to visually dis-
criminate between classes. The quality of the class separation is estimated by
computing the predictive accuracy of the k-nearest neighbour classifier. Our eval-
uation scheme is faster and simpler than the VizRank approach and does not
suffer from the typical k-NN problems such as the computation of an adequate
value for k or the computational complexity (O(n2)).

3 Radviz’s algorithm

RadViz (Radial Coordinate visualization) [4][5] is a visualization technique based
on Hooke’s law that maps a set of n-dimensional points into a plane: each point
is held in place with springs that are attached at the other end to the feature
anchors. The stiffness of each spring is proportional to the value of the corre-
sponding feature and the point ends up at the position where the spring forces
are in equilibrium. Prior to visualization, feature values are scaled to lie between



0 and 1. Radviz offers a unique method which can help to identify relations
among data. Its main advantage is that it needs no feature projections and pro-
vides a global view on the multidimensional, multivariate data. The condition
of equilibrium for a single object u is given by

∑n−1
i=0 (Ai − u) ∗ yi = 0.

Radviz faces several open problems: overlapping (different objects can be
placed in the same 2D point), visual clutter (different instances could be placed
close to each other) and NP-completeness (the final effectiveness of the approach
depends on the dimension arrangement). Despite that, no study has shown yet
whether there exists a relation between the solution provided by the optimization
algorithm and the improvement in the visual usefulness of the projection.

4 Dimension Arrangement Formalizations

Although the DA problem has already been formalized in a generic context
by Ankerst et al. [1], here we present new formalizations within the context of
Radviz with the goal of providing a better exploration of the search spaces.

4.1 Independent DA

Let us assume that we have a dataset with points m that represent information
represented with d dimensions. We define the similarity matrix as a symmetric
matrix of dimensions d × d, where each element Si,j represents the similarity
between dimensions i and j. Each dimension i is represented as a distribution of
m elements, where each element is taken from the i− th dimension of each point
in the dataset. In the experimental section we will describe the various metrics
we have used to compute such similarity metric. Additionally, we define the
neighborhood matrix N of dimensions d×dwhich describes the circular distance
between any two dimensions located in the circle. In particular, we calculate each

Ni,j as 1 − cdist(i,j)
(d/2) , where d is the total number of dimensions and cdist(i, j)

represents the circular distance between dimensions i and j located on the circle.
This distance is calculated as the number of dimensions on the circle between i

and j through the shortest circular path. The larger the value of Ni,j , the closer
the dimensions i and j are on the circle.

Thus, we can then formalize the dimension arrangement problem for a pair
of similarity matrix S and neighborhood matrix N as a maximization problem
where

∑d−1
i=0

∑d−1
j=0 Ni,j ∗Si,j achieves its maximum value (i.e., the more similar

two dimensions are, the closer they should be located in the arrangement.

4.2 Radviz-dependent DA

Our second DA formalization focuses on using Radviz to evaluate the quality of
the arrangement. Again, we start with the similarity matrix S of dimensions d×d.
For each possible dimension arrangement, this matrix represents a measure of the
similarities across dimensions. For each specific matrix S, we project each row in
S onto the circle using Radviz. The idea is that the projected dimension should



be as close to its dimension on the circle as possible. If that does not happen, it
may be either that the dimensions are highly correlated or that the dimension
arrangement is not good. Thus, for each dimension arrangement, each dimension
i in the graph will have two representations: its coordinates on the circle, and
its projected coordinates inside the circle, where the arranged dimensions are
located according to the angular positions and the projected dimensions are
calculated with respect to the Radviz formula.

Thus, the dimension arrangement problem can be defined as an optimiza-
tion problem where for a given similarity matrix S, the optimal dimension ar-
rangement is given by minimizing the sum of Euclidean distances between the
arranged and the projected dimensions within the graph. This formalization fol-
lows the fact that the shorter the distance between an arranged dimension and
its projection, the better the quality of the arrangement.

5 Experimental Setting

We want to focus our analysis on the relationship between the multiple DAs, the
optimization functions, and the quality of visualization. For that purpose, in our
analysis we make use of datasets with a limited number of dimensions that will
allow us to fully explore, through a brute-force analysis, all the range of possible
solutions. Our aim is twofold:

– To understand whether the formalization of the optimization problem as well
as the metrics to measure similarity play a role in the way the search space
(of the dimension arrangements) is explored.

– To carry an extensive experimental evaluation with both real and synthetic
datasets to determine the relationship between the dimension arrangements
and the quality of their associated data projections, studying the impact of
various parameters like number of instance, dimensions, classes, and over-
lapping of the classes.

Regarding the synthetic data generation, we define four parameters for our algo-
rithm: the number of classes nc (values from 2 to 100); the number of dimensions
nd1; the number of instances ni (values from 100 to 10000) and the percentage
p overlap (up to 40%)2 of instances that are randomly moved from one class
to another. For each possible combination of nc, nd and ni, we create random
instances within each class such that the clusters representing the classes are
initially separated by equal distances. Finally, we modify the membership of a
percentage p overlap of the instances such that the boundaries between classes
become blurry and classes start to overlap. We then used several real datasets
from the UCI Machine Learning Repository3.

The DA formalizations we have proposed are based on similarity measure-
ments between dimensions. Although there exist many metrics to measure the

1 We imposed a max # of dimensions (8 ) to be able to fully explore all possible DAs.
2 Larger values did not add any extra overlap and were not considered.
3 Datasets available at http://archive.ics.uci.edu/ml/datasets.html



similarity, we make use of the the Kullback-Leibler divergence [15] and the Co-
sine Similarity. The Kullback-Leibler (KL) divergence measures the difference

between two probability distributions P and Q with cardinality d 4:
∑d

i=1 Pi ∗
log2(

Pi

Qi
). The inverse of it represents the similarity between them. On the other

hand, Cosine similarity is calculated as the dot product between the distributions
P and Q divided by the product of their norms. In order to study the relation-
ship between a dimension arrangement and the visual usefulness of its projected
data in Radviz, we first need to determine how visual usefulness is measured.
The quality of the projected data onto the circle is related to the quality of the
clusters obtained i.e., the better the separation across clusters and instances,
the more information the visual representation will convey to the data analyst.
Thus, we measure visual usefulness of a data projection (and its corresponding
dimension arrangement) using the Davies-Bouldin index (DB) [3]. DB is known
to be one of the best indices to measure both the inter- and intra-cluster separa-

tion [8]. The DB index is computed as 1
n ∗

∑n
i=1

i6=j
max

{

Sn(Qi)+Sn(Qj)
Sn(Qi,Qj)

}

, where

n is the number of clusters, Sn(Qi) is the average Euclidean distance from each
instance in cluster Qi to its cluster centroid, and S(Qi, Qj) is the Euclidean
distance between cluster centers (Qj can be any one of the clusters, a part from
Qi). Hence, the smaller the ratio, the more compact and separated the clusters
are. Consequently, we seek dimension arrangements whose corresponding data
projections have small DB indices associated. However, it may be the case that
an initial dataset of instances with d dimensions shows a very high DB index in
the d dimensional space, and thus it becomes very hard for its projected dataset
to offer a good visualization. Thus, instead of measuring the DB of a projection,
we measure the ratio R between the DB in the original data and the DB in the
2-dimensional mapping. Higher values of R correspond to higher visualization
quality of the projected data. The first objective of the experimental evaluation
is to be able to determine the relationship between the dimension arrangement
and the quality of the associated visualization for each combination of the fol-
lowing parameters: (i) a specific dataset, either real or synthetic, (ii) a specific
formalization of the DA problem, and (iii) a specific metric. Figure 1(a) shows an
example result with the function Radviz-dependent. The number of points repre-
sents the number of dimension arrangements, while the black line represents the
average values of a sliding window that captures the trend of density. We can
observe that low values of the optimization function correspond to high values
of R (minimization problem). The relation will be inverse when considering the
function independent (maximization problem). Figures 1(b) and 1(c) show the
Radviz projections associated to the worst value of R and the best value of R

respectively. In Figure 2(a) we can observe that as the number of samples in
the initial dataset increases, the best visual quality values R for the projected
data decreases logarithmically. Figure 2(b) shows the visual information R ver-
sus the value of the optimization function for all possible DAs of datasets with
4, 6, and 8 dimensions. We can infer a general trend whereby as the number

4 We used a symmetric version of the original Kullback-Leibler divergence.



(a) Trend (b) Worst R (c) Best R

Fig. 1. (a) shows the correlation between the optimization function Radviz-dependent

and the visual usefulness R of the DAs (the green points), using a synthetic dataset
with 5 classes, 1000 instances, 8 dimensions and 10% of overlap. (b) and (c) show the
projections with the best and the worst value of R.

of dimensions increases, the visual usefulness also improves following a linear
curve. This result implies that as the number of dimensions grow, the Radviz
technique manages to better maintain the initial distribution of the dataset i.e,

the more dimensions, the better the samples can be characterized and the better
Radviz will perform. Furthermore, this result confirms previous reports stating
that the Radviz technique is useful for highly dimensional datasets [12]. Figure
2(c) shows the visual quality R of the Radviz projections of datasets containing
from 5 to 100 different classes. Similarly to the number of instances, we ob-
serve that as the number of classes increases, the quality of the projected data
decreases logarithmically. Figure 2(d) that the maximum value of R is linearly
reduced as the percentage of overlap increases (a bad Radviz projection may
be bad because of the technique itself or may be bad due to the fact that the
initial dataset is hardly separable). Thus, the computation of the DB index for
the initial dataset can give us an insight on how well the Radviz visualization
can do. Moreover, we want to understand whether the formalization of the op-
timization function that explores the DA has an impact in the way the optimal
solution is obtained. The optimization function associates a numerical value to
each of the DAs. Our Independent function (indep) looks for the highest value
(maximization problem), and our dependent function (dep) looks for the smallest
value (minimization problem). In order to understand the quality of the search
space, we evaluate its non-convexity. The non-convexity of the search space gives
a measure of the probability that the optimization function will fall into a lo-
cal minima. The smaller the non-convexity of the search space, the higher the
probability of a local minima (or maxima) being a global minima (or maxima).
We calculate the non-convexity of the search spaces using the Haussdorf dis-
tance as λ(A) = supx∈co A infy∈A ‖ x − y ‖ where A is the set of points in the
space search and co A represents its convex hull. We compute the non-convexity
for the DA formalizations presented in Section 4: Independent function indep,
Radviz-dependent function dep and the binary neighborhood matrix initially
described by Ankerst et al. [1] (referred from now on as Original). As we can



observe in Figure 2(e), the Original function presented in [1] has a search area
that is much less convex than the other two optimization functions for all possi-
ble combination of parameters and datasets. Still, such gap grows as the number
of dimensions increases. These results indicate a higher probability of finding a
global minimum (or maximum) when using the formalizations proposed in this
paper.From previous analysis, the metric does not seem to impact the visual
quality of the projections in terms of number of instances, classes, dimensions or
percentage of overlap. In fact, we observe similar R values for both KL and COS

across all the analysis. However, we want to understand whether the metric has
an impact in the way the search space is explored i.e., whether the selection of a
metric can help decrease the chances of the optimization algorithm falling into
a local minima (or maxima). For that purpose, we compute the non-convexity
of the search spaces explored when using any combination of parameters.Figure
2(f) shows the trend between the non-convexity values of all combinations of pa-
rameters for each KL and COS metric. We can observe that the COS metric has
smaller non-convexity values than KL. Hence, although in principle both met-
rics can potentially find solutions with similar visual quality R, the COS metric
decreases the chances of the optimization function falling into local minima (or
maxima), thus increasing the probability of finding a better DA.

(a) Visual quality: instances (b) Visual quality: dimensions (c) Visual quality: classes

(d) Visual quality: overlap (e) Non-convexity (opt.functions) (f) Non-convexity (metrics)

Fig. 2. Impact of the parameters in the visual quality of the projections: (a) instances,
(b) dimensions, (c) classes, and (d) overlap; analysis of non-convexity according to (e)
optimization functions and (f) metrics with both real and synthetic data.



6 Conclusions

Radviz (and radial visualizations) is one of the most common techniques to help
in the process of detecting patterns when visualizing high dimensional data. One
of the main problems of these techniques is that the usefulness of the projections
highly depends on the dimension arrangement (DA), which is a NP-complete
problem. In this paper, we have presented two novel variants for the formaliza-
tion of the DA problem showing that they allow to explore a search space whose
non-convexity makes it more probable to find the desired global maxima (min-
ima). Then, we have presented a technique to automatically evaluate the visual
usefulness of a projection by means of the Davies-Bouldin index, studying the
relationships and the impact of various metrics and parameters in the quality of
the visualization.
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