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Abstract—Although research in the areas of human mobility
and social networks is extensive, our knowledge of the rela-
tionship between the mobility and the social network of an
individual is very limited, mainly due to the complexity of
accessing adequate data to be able to capture both mobility
and social interactions. In this paper we present and charac-
terize some of the spatio-temporal features of social networks
extracted from a large-scale dataset of cell phone records. Our
goal is to measure to which extent individual mobility shapes
the characteristics of a social network. Our results show a non-
trivial dependence between social network structure and the
spatial distribution of its elements. Additionally, we quantify
with detail the probability of a contact to be at a certain
distance, and find that it may be described in the framework
of gravity models, with different decaying rates for urban and
interurban scales.
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I. INTRO

Social networks have a fundamental role in our everyday
lives. Our social connections determine to a great extent our
daily activities, ranging from family to work, from leisure
to travel. Understanding of social networks, interepreted
broadly as social ties and not only in terms of network
applications, has become essential due to the profound
implications that their structure can have in human activities
[1]. The amount, structure and type of social connections
people have depend on a number of external factors such
as gender, socio-economic factors, and many others. An
important aspect of social networks is that they are geo-
graphically embedded [2], a fact that affects and is affected
by the structure of the network. The exact mechanisms of
this interplay between social structure and the geographical
characteristics of its units have been addressed from different
points of view [3], [4], [5], [6]. However, the lack of
empirical data has been a limiting factor for the validation
of any attempt to describe or explain this relationship.

In recent years, there has been a remarkable improvement
in the deployment of pervasive infrastructures, such as
mobile phones, GPS, online social networks, etc. In this
context, and due to their wide coverage and high penetration,
cell phones have become one of the main sensors of human
behavior. As such, cell phone networks can capture both

the social network of an individual (captured as cell phone
calls between users) and the spatial characteristics of that
individual (captured using the location of each cell phone
antenna when phone calls are made). The high penetration
of cell phones implies that they can capture a large amount
of spatio-temporal relationships at a scale not available
to other pervasive infrastructures. This opens the door to
characterize how the structure of a social network is related
to the mobility of the individuals that defined those social
interactions.

Cell phone call records are generated by telecommunica-
tion operators for invoice purposes and may be gathered in
datasets called Call Detailed Records (CDRs). A consider-
able amount of research based on CDR analysis have mainly
focused on human mobility [6], [7], [8], where the variable
under study in these cases is the position of the user, with
no information about the user’s social contacts. However,
to address the relationship between the spatial distribution
of a user and her social structure, one should focus in
understanding how this structure changes in space. To this
end, a central question is to uncover the probability of having
a contact located at a certain distance d. This question is well
suited to be explored by analyzing cell phone datasets, where
the distance d between users is captured at the moment an
interaction takes place, d being defined by the two cell phone
towers used to deliver the call. Cell phone records contain
multiple calls between a given pair of users, and each one
of these calls may have associated a potentially different
distance.

In other types of datasets, such distance at the time of
the interaction is general not available. As a result, the most
frequent approach to deal with this multiplicity of distances
between two individuals is to select a unique quantity to
represent the distance between two users, which may be the
distance between homes [5], [9], the distance between zip
codes[10], the most frequently used towers [11], and other
equivalent measures of average position. As a result, these
studies do not consider the full extent of spatio-temporal
information but a coarse-grained description, as they assume
that the distance between two individuals is constant, which
is not the general case. To avoid this limitation, other studies
have made use of location-based social networks, where



individuals self-publish a location through a given service
(such as Foursquare, or any equivalent application) [12],
[13], [14], which can be used to characterize spatio-temporal
relations. In this case, a user may have several associated
positions, but in general these are not more frequent than
phone calls, leading to less accurate results.

Previous analysis of spatially-embedded social networks
have shown that the probability of two contacts being at
a given distance may be well described by the so-called
gravity models. These models propose that there is an inverse
power-law dependence with the distance for certain variables
of interest, and in some cases the exponent found has
been 2, mimicking the distance dependence of the law of
gravity. For instance, the probability of contacts living at
distance d [10] or the communication intensity between
cities [15] have been found to observe an inverse square
law dependence with d. It should be noted that these studies
assign a fixed distance between agents (contacts or cities), in
some sense providing a static characterization of the spatial
distribution of social agents. In this work we focus on a
more dynamical point of view, taking into account the actual
distance between users in every call. To our knowledge,
there is no previous work tackling in a systematic fashion
the study of the structure a social network and the actual
distances involved in each link at different times. This
allows us to quantify this relationship with unprecedented
detail reaching unexplored scales. Additionally, we gain
information about the statistical structure of the distance
improving the understanding of the underlying mechanisms
of human mobility and social ties.

II. RELATED WORK

Related work in the area of spatio-temporal analysis of
social networks is scarce due to the complexity of capturing
data that reflects both interactions and mobility. The best part
of studies use cell phones as sensors, and generally have two
main different approaches: (1) cell phone records are used
for the study or (2) data is collected from volunteers, directly
from the phone or from the activity of a location-based social
network application.

An example of the first approach is, for instance, the work
by Wang et al. [11], where the authors study to what extent
mobility patterns shape social networks, finding that mobile
homophily, network proximity and tie strength strongly
correlate with each other. In [10], Lambiotte ef al. analyze
cell phone calls and, using zip codes as a general measure
for the location of the user, find that the probability of having
a call with a user at distance d is inversely proportional to
the square of the distance P; ~ d=2. In [15], Krings et
al. found an equivalent result for the aggregated call length
between two cities using information aggregated at a city
level. The previous three approaches have one characteristic
in common, they all consider fixed mobility information to
characterize a social tie (call), i.e. each individual has a

fixed location (which in each case is the most used antenna,
zip code or city) when calculating the distance for each
interaction. In [5], Cho et al. analyze a combination of
location-based services and phone calls. Their main result
focuses on the distance between users’ homes and, even
though they compute the distribution of distance at the time
of the call, there is no analysis of it, and it is only used
for motivation purposes to justify their particular theoretical
mobility model. In the present work, we do a full description
of the probability of a call being at a given distance.

Examples of the second approach can be found in the
results presented by Cranshaw et al. [16] and Backstrom
et al. [9]. Cranshaw et al. [16] traced 500 individuals
and analyzed the location entropy for predicting friendship
finding a positive correlation between entropy of locations
and common friends. Backstrom et al. [9] used informa-
tion collected from Facebook and user-supplied addresses
to predict the location of an individual. In any case this
approach has two main limitations: (1) the reduced number
of individuals considered for the study and (2) the validity of
the results only for the location-based social-network used
for the study.

III. DATA PRELIMINARIES

The data captured by cellular infrastructures provides a
key source for investigating large-scale social interactions
and human mobility. Cell phone networks are built using a
set of base transceiver stations (BTS) that are in charge of
connecting cell phone devices with the network. Each BTS
tower has a geographical location typically expressed by its
latitude and longitude. The area covered by a BTS tower is
called a cell. Each cell is typically divided in three sectors,
each one covering 120 degrees. At any given moment, one
or more BTSs can give coverage to a cell phone. Whenever
an individual makes a phone call, the call is routed through a
BTS in the area of coverage. The BTS is assigned depending
on the network traffic and on the geographic position of the
individual.

The geographical area covered by a BTS ranges from
less than 1 km? in dense urban areas to more than 3 km?
in rural areas. For simplicity, we assume that the cell of
each BTS tower can be approximated with a 2-dimensional
non-overlapping region computed using Voronoi tessellation.
Figure 1 (left) shows a set of BTSs with the original
coverage of each cell, and Figure 1 (right) presents its
approximated coverage computed using Voronoi.

CDR databases entries are generated when a mobile phone
connected to the network makes or receives a phone call or
uses a service (e.g., SMS, MMS, etc.). In the process, and
for invoice and legal purposes, the information regarding the
time and the BTS tower where the user was located when
the call was initiated is logged, which gives an indication
of the geographical position of a user at a given moment in
time. Note that no information about the exact position of
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Figure 1: (Left) Example of a set of BTSs and their cover-
age and (Right) Approximated coverage obtained applying
Voronoi Tesselation.

a user in a cell is known. Also, no information about cell
phone location is known or stored if no interaction is taking
place.

From all the data contained in a CDR, our study uses
the encrypted originating number, the encrypted destination
number, the time and date of the call, the duration of the
call, and the latitude and longitude of the BTS tower used
by the originating cell phone number and the destination
phone number when the interaction happened. Data was
sampled for a period of 6 complete weeks from a single
telecommunications operator on a national level from a
European country. In order to preserve privacy, all the
information presented is aggregated and original records are
encrypted. No contract or demographic data was considered
nor available for this study.

The dataset was pre-processed in order to capture only
regular calls between users. In this way, we filtered out calls
containing irregular features that may introduce spurious
effects. We only considered calls between mobile phones,
discarding special numbers and land lines. Since there is
missing information about users that don’t belong to the
operator, we focus our analysis in the graph formed only
by users belonging to the operator. Additionally, since we
are interested in the social significance of each call we took
into account only users that have at least one reciprocal call
during the time window spanned by the dataset. Results do
not change qualitatively if the number of reciprocal calls are
of the order of one. We are interested in the characteristics
of the social graph formed by the social ties, so we define a
link (and only one link) to be present if there are any number
of calls between two users. We call such a link a contact,
to distinguish it from a call, which can occur several times.
The number of calls between them is analized separately as
a link weight. In other words, there are not multiple links
between two users.

Finally, we compute the giant connected component (GC).
The largest of the remaining clusters has a number of nodes
no larger than 0.002% relative to the nodes in the GC. We
discard these, and only consider nodes and links that belong
to the GC, to avoid any bias product of the other clusters

small relative size. After this preprocessing, the resulting
dataset has approximately 69.8M/ number of links, 14.6 M
number of nodes and 404M number of total calls.

IV. METHODOLOGY

We provide a detailed exploration of the statistical proper-
ties of the different relevant variables to understand the rela-
tion between social network properties and the geographical
properties of the nodes at the time of a call.

To this end, we compute the social graph from the CDR
data by identifying the unique user identification codes with
nodes, and pairs of users who have called each other (once
or more) with links. Nodes form the set V', and links the set
E, so the graph G = G(V, E) represents the social graph of
the CDR. Note that a given pair of users, characterized by
the link e;;, must have made at least a call in each direction,
so we consider that links are undirected. The degree k; of
node 7 is defined as the number of links of that node, i.e.
the number of different contacts user ¢ has.

The total number of calls n;; between a given pair of
users ¢ and j can be interpreted as a discrete scalar weight
of link e;;, defined in the interval [1,np,qz], being nmaq
the maximum number of calls recorded in the dataset. Two
variables, the distance associated to the call s between users
i and j, d;;s, and its duration, ¢;;,, are associated to a
particular link e;;, so there are n;; values of (d;;,n;;) for
each link e;;.

As we are interested in comparing variables with different
dimensionality, we compute also the average of the distance
Jij and the average of call duration fij between users 7 and
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In this context we will present the statistical characteristics
of the geographical distance d;;, associated to the s call
between users ¢ and 7, as well as the associated call duration
tijs. It is useful to note that the distance d;; is in fact the
distance between the BTS towers associated to users ¢ and
7 when the call s is taken place. Because of this, the error
in the distance is very small, of the order of a meter. This

error should not be confused with the uncertainty in the



actual distance between users, which depends among other
factors on the density of BTS towers, and which will be
analized in future work. Moreover, the error in the duration
of the call, which is always measured in seconds, is very
low as well, being of the order of the second. In order to
compare call variables d;js, t;;5 with link variables n;;, we
compute the mean of those quantities Jij, ti;. In the same
way, to compare link variables (n;; and the above mentioned
d;;s and t;;,) with node variables k; we compute weighted
means 7;, d;, t;, where the bar denotes that it is an averaged
quantity, and the sub-index determines the nature of the
average, which reflects appropriately its central tendency.
To understand the structure of the underlying social graph
of the CDR dataset, we measured some of its most relevant
characteristics, mainly the different probability distribution
for the variables of interest. Furthermore, we focus in the re-
lationship between the social network and the distance prop-
erties of the users, turning our attention to the conditional
probability distributions that allow for a direct visualization
of the relationwhip between the variables. Importantly, we
observe two different regimes in the distribution of call
distance. We discuss the validity of gravity models in this
level of description and provide insights as to what the
underlying causes of these two regimes could represent.

V. RESULTS
A. General characterization of the social network

Let us recall that the number of different contacts of user ¢
corresponds to the degree k; of node ¢ in the social graph. In
Fig. 2 we show the complementary cumulative probability
distribution (CCDF) of the degree for the complete social
graph. We observe that it decays slower than exponentially,
a sign of non-trivial graph structure, although it is not clear
that the tail is a power-law. As in many other instances of
social networks, the heterogeneity of the distribution shows
that a few users present a large number of different contacts,
while a large set of users show just a few contacts in the
time window spanned by our data. This dependence of the
degree is consistent with other results for cell phone calls
[13] or even other types of social networks [14].

Fig. 3 shows the distribution of the number of calls
between any two users 4,j, P(n;;). We see that it also
presents signs of non-trivial structure, with a decay slower
than exponential, pointing to the fact that some users have a
remarkably larger number of calls than others. Interestingly,
the number of calls of every user in the social network span
three orders of magnitude, from just a few calls during the
6 week window, to almost 1000 calls, nearly an average
of 1 call per hour. Even though the precise shape of these
CCDFs is out of the scope of this work, it is nevertheless
an important feature that can provide deeper insight into the
social network structure.

To assess how these two variables are related it is in-
structive to show the probability of the mean number of calls
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Figure 2: Complementary cumulative probability distribution
of degree k;. The distribution does not have an exponential
decay, a characteristic of social networks.
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Figure 3: Complementary cumulative probability distribution
of the number of calls n;;.

given that the node has a degree in some interval of interest.
In particular we choose two set of nodes, one corresponding
to those with lowest values of the degree (k < 3), the other
one corresponding with high degree (kK > 45). We have
chosen extreme values for the sets to represent different
social structure characteristics, while maintaining enough
statistics to have well defined distributions. In solid dots,
the probability distribution of the number of calls for low
degrees has a distinct heavy-tail, i.e. most low-connected
users make very few calls, some making a large number of
calls. On the other hand, the most connected users present
a completely different functional form, with a precise mode
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Figure 4: Probability distribution of the mean number of
calls n; given that k; > 45 (open dots) and k; < 3 (solid
dots). See Table I for more information.

Table I: Table of quantiles for Fig. 4
p20  p40 p50  p60  p8O

3) 1 2 267 35 6.67
45) 396 518 582 6.54 8.62

P(ﬁi ki <
i|ki >

approximately at 6 calls. Very few of them make few calls,
and also very few make a very large number of calls.

As mentioned in Sec. IV, each link e;; has associated two
sets of dimension n;;, one with the duration of each call,
the other one with the call’s distance, which we will discuss
later. In Fig. 5 we show the distribution of the duration, in
seconds, associated to every call. The distribution is also
quite broad and presents a maximum approximately at 14 s.
Calls lasting 1 and 2 seconds are possibly over-represented,
because in most cases they are not intended but a misplaced
call or something of equivalent spurious nature. It is worth
highlighting that the presence of a heavy-tail implies a
non-negligible probability of calls on a wide range of ¢;;,,
some lasting over 8 hours, spanning almost fiver orders of
magnitude.

B. Interplay between geographical distance and social net-
work structure

The fact that there is an interplay between our social
network and the way we move spatially should be intuitive.
It is understood that most of our movements are directly or
indirectly related to our social connections, from going home
or work, out for leisure or travel, generally speaking, these
movements are connected to some extent with someone else
in our network.

A more difficult question is to precisely characterize
this relationship. Here we approach this problem from a
statistical point of view, and we try to answer the question by
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d:
Figure 6: Conditional probability distributions: P(d;|k; < 3)
(solid dots) and P(d;|k; > 45) (open dots), where d; is
measured in km. See Table II for more information.

10

analyzing the probability distribution for the distance at the
time of a call for different sets of users with common social
traits. These conditional probability distributions allow us
to understand qualitatively and quantitatively this interde-
pendence.

One of the most direct ways to characterize where people
are relative to each other depending on the structure of
the network is to relate distance at the time of the call
and node degree k;. We show in Fig.6 the conditional
probability density functions P(d;|k; > 45) (open dots) and
P(d;|k; < 3) (solid dots).

We observe a significant difference between both dis-



Table II: Table of quantiles for Fig. 6
p20 p40 p50 p60 p80

P(c{|kZ <3) 1.97 5.99 9.37 14.83  50.24

P(d;|k; > 45) 1777 27.84 34.09 42.16 70.79
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(open dots), where d;;, is measured in km and t;;, is
measured in seconds. See Table III for more information.

Table III: Table of quantiles for Fig. 7

p20  p40 p50 p60 p80
P(dijs|tijs < 10) 0 034 098 202 8.65
P(dijs|tijs > 8000) 4.12 2228 5147 12921  380.15

tributions, in particular, the modes of the distribution are
remarkably apart, being 1 km for nodes with low degree and
approximately 20 km for nodes with large degree (hubs), an
order of magnitude of difference. Our result shows that users
with a large number of contacts have a significantly larger
probability of calling someone farther away than users with
low number of contacts. This relates to the fact that the
geographical scope or influence area of a user is related
in a proportional way to the number of contacts that user
has. As for the number of calls, the distribution for low
degree users is broader than the one the most connected
users, for which its standard deviation is much smaller and
the probability is concentrated around its maximum, yielding
a more representative scale. An effect that it is important to
comment is that many users that are nearby when calling
use the same tower and are assigned a d = 0, which in turn
makes d take values below the resolution of the towers. This
is particularly the case of low connected users.

It is also instructive to compare the relationship between
the distance at the time of the call with the duration of that
call. In Fig. 7 we show the probability density functions

P(dijs|tijs § 108) (SOlld dOtS) and P(dijs|tijs 2 80005)
(open dots). Again, the two distributions show different
characteristics, suggesting that the two variables are strongly
correlated. Both distributions decay with a heavy-tail, but the
probability of distance for long calls decays less rapidly than
the one for short calls. This result is along what could be
expected, since a call between distant users is possible to
have a conversational nature, and thus the users may spend
more time in it, whether a call for nearby users possibly
relates to some kind of coordination, where, for instance, a
user delivers a short instructive message or notice.

Interestingly, the above results could be interpreted by
supposing that calls between distant people are infrequent
and this causes them to be longer. To test this hypothesis,
we computed the probability distribution of the mean call
duration and the total call duration between users, given that
the number of calls between them is higher (and lower) than
appropriately chosen values. These distributions are shown
in Fig. 8, upper and lower panels respectively. As before,
solid dots represent the set with low number of calls, while
open dots the set with higher number of calls. We find that
the pairs of users that present a higher number of calls
talk consistently more time than users that call each other
sporadically. Mean call duration presents a maximum value
at approximately less than 30s for low number of calls, and
70s for large number of calls, while total time duration is
slightly below 30s for infrequent callers and near 10000s
for frequent callers. To conclude, highly connected users
talk more in total and in average than low connected users,
and do so with contacts farther away.

C. Probability of distance at the time of call

The probability density function of the distances associ-
ated to every call is shown in Fig. 9

The distribution is quite broad, presenting a heavy-tail
with two apparent different regions or regimes, one approx-
imately between 1 km and 10 km, and another from 10 km
onward, both compatible with power-law decay. The first
range decreases as d %77 while the second region decreases
as d~1-5. The mode of the distribution is approximately at
0.9 km, and the tail extends almost up to 102 km. Tt is worth
to mention that the distribution observed here may be the
result of the type of structure in Fig. 7, a point that is being
currently studied.

These results are in the same line with previous work on
equivalent measures of distance between users even though,
as discussed in Sec. II, distance is not always defined in the
same way and thus may not be directly comparable, a point
that remains to be clarified. The authors in [13] report similar
findings with d=°-5, where in this case d corresponds to
distance between user check-ins. The authors in [14] report
d~! + ¢, in this case the distance is associated to a fixed
geographical location made public by the user. In [9] similar
findings are shown where the dependence decreases as d !,
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Figure 8: Probability distribution of mean call duration
(upper panel) and total call duration ( lower panel) given

that the number of calls n;; < 2 and n;; > 125.

and the distance is a user supplied address. Interestingly, as
pointed out before, the authors in [5] do report distance at the
moment of call for a CDR dataset, but with no description
or quantification of the distribution. Nevertheless, our results
appear to be compatible with theirs.

As mentioned in Sec. I, [10] and [15] explore a framework
known as gravity models and find that the probability of a
call between users that live at a distance d decays as d—2.
Our results show that when the variable under study is the
actual distance between users when they initiate a call, the
dependence can still be interpreted as power-law decay, but
in contrast, there are two regimes depending on the scale
considered, and with different decay rates. Two or more
regimes where also found in [17], where they focus on find-
ing a unified functional form for all the regimes observed. In
[18], results from [6] are reinterpreted by proposing different

10° 10 10°
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Figure 9: Probability distribution of the distance d;;s (in
km) associated to a call. The region approximately between
1 km and 10 km may be described by a power-law decay
with exponent a = —0.77, while the region from 10 km
onward shows a faster decay consistent with an exponent
a = —1.5.

power-law exponents to different distance scales. However,
the model presents three integer exponents, a result that is
not found in our observations. We believe that our findings
are compatible with urban/interurban distances (being the
threshold between the two approximately at 10km), which
points toward different mechanisms associated to the two
intervals. The study of such mechanisms are subject of
ongoing work.

VI. CONCLUSION

A thorough understanding of human mobility is necessary
for a wide range of critical areas, such as city planning,
network dimensioning, public health development, preven-
tion of large-scale catastrophes, and many others. Every
step forward in uncovering the basic mechanisms of human
displacement can have a major impact in these and other
important areas. In this work we have presented an initial
characterization of a massive cell phone dataset, in order to
understand the relationship between social network structure
and the dynamical spatial distribution of its constituents.

We focused in the distance at the time of the call, which
describes in detail the spatial situation of the users associated
to the call, avoiding the use of a static proxy for their
location. We provide an in-depth statistical analysis of the
social graph configuration underlying the call dataset, along
with other relevant variables such as link weights in the form
of call duration and number of calls.

Our results describe quantitatively that users with a higher
number of connections systematically have these contacts
farther away than users connected just to a few others.



Additionally, the mean number of calls is strongly cor-
related with the degree of the user, showing a well defined
heavy-tail in the case of users with low number of connec-
tions, while distributed around a clear maximum in the case
of highly connected users, which make consistently more
calls in average.

Moreover, the distance of a call is strongly correlated with
its duration, being short calls nearby much more probable
than the distant ones.

Finally, we discuss the fact that the probability of two
users being at distance d at the time of a call decreases with
the distance approximately as d~%77 for scales compatible
with urban distances, and as d—1° for scales compatible with
interurban distances This power-law dependence has been
put forward before for related variables, under the name of
gravity models, the exact value of the exponent found is not
agreed upon and possibly depends on the exact definition
of the distance. Our work extends these previous results
to a more dynamical framework that implies a finer scale
of description. The fact that the statistical behavior of the
distance is strongly dependent on the urban/interurban struc-
ture underlying human displacement suggests that different
microscopic mechanisms may be in play and should be taken
into account for an accurate modeling of the probability of
two contacts being at a certain distance apart.

Future work aims at including in the analysis the complete
time dependence encoded in the timestamp associated to the
phone call, in order to properly model the full set of depen-
dencies between spatio-temporal characteristics and social
network structure. Such study will help improve mobility
prediction models, event detection algorithms, behavioral
analysis of agents in urban/interurban environments, and
related problems. Furthermore, applications to modeling of
geographical influence of users, epidemic spreading analysis,
among others, are also possible.
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