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Abstract—Studies to understand the impact that demographic
and socio-economic factors have in the use of cell phones have
been traditionally carried out by social and technical researchers
through the use of questionnaires and personal interviews.In
recent years, and due to the pervasiveness of cell phones in
emerging and developing economies, large datasets with millions
of interactions are generated, anonymized and stored in real time
by telecommunication and internet companies. However, these
datasets do not typically contain any socio-economic information
that characterizes the users. As a result, in order to understand
the impact of socio-economic parameters on the use of mobile
phones at larger scales, researchers have typically correlated
the behavioral analyses drawn from the anonymous cell phone
usage datasets to aggregated demographic or socio-economic
parameters compiled by institutions like the National Statistical
Institutes (NSI) or the World Bank (WB). In order to compute
these correlations, the approximateresidential location of the
anonymized users is required. In general, carriers only have
such information for users with a contract, which in emerging
economies accounts for less than a5%. In this paper, we pro-
pose a new technique to automatically predict the approximate
residential location of anonymized cell phone users based on
their calling behavior, assuming that we have a small set of
users for whom their approximate residential location is known
(the subscribers with a contract). Our results indicate that we
can correctly predict the residential location of up to 70% of
users with a coverage of50%. By automatically associating cell
phone users to geographical areas, we aim to provide a tool that
facilitates the analysis – at a national or global scale – of the
impact that socio-economic factors might have in the use of cell
phones.

Index Terms—Cell phones in emerging and developing
economies, socio-economic analyses, behavioral modelingand
characterization, data mining

I. I NTRODUCTION

The adoption of information technologies in emerging and
developing economies1 has attracted the interest of many so-
cial and technical researchers trying to understand the impact
that demographic and socio-economic factors have in the use
of technologies [1], [2], [3]. Such analyses are of interestto
both policy makers interested in the assessment of technology-
based programs, as well as technologists focusing on the
development of personalized services for emerging economies.
Studies that analyze demographic or socio-economic dispari-
ties in the access to technology, are typically based on personal
interviews that correlate individual parameters to personal

1Based on the 2009 International Monetary Fund
(IMF) World Economic Outlook Country Classification
www.imf.org/external/pubs/ft/weo/2009/02/weodata/groups.htm

technology use and experiences. Although personal interviews
offer important insights that can be helpful towards the char-
acterization of technology usage, these are generally limited
to a small number of individuals that are either interviewed
in person, or have answered a questionnaire about cell phone
usage. Despite the best efforts, the limited number of users
that participate in the study may introduce an implicit biasin
the analysis.

Due to the pervasiveness of cell phones in emerging
economies, large datasets with millions of interactions and
cell-phone usage traces are currently generated, anonymized
and stored in real time. Telecommunication companies as well
as internet companies with mobile services have increasing
access to such data. These rich datasets facilitate a large
variety of cell phone use analyses in the areas of behavioral
analysis [4], human mobility [5], social networks [6], and
SMS or web-based m-services [7], [8] at a national scale.
In addition to widely expanding the samples of individual
interviews, dataset analyses are far less intrusive as individual
behavior can be studied without interfering with the users.
Such techniques provide a complementary research tool over
traditional qualitative approaches [9].

Unfortunately, most large datasets with cell phone usage
patterns do not contain any demographic or socio-economic
information about individual users. To better understand the
impact of socio-economic parameters on the use of mobile
phones, researchers have typically correlated the behavioral
analyses drawn from the cell phone usage datasets to aggre-
gated demographic or socio-economic parameters compiled by
social researchers and ethnographers at institutions suchas
the World Bank, United Nations or country-based National
Statistical Institutes (NSI).

For instance, Eagle [10] studied the correlation between
communication diversity and its index of deprivation in the
UK. The communication diversity was derived from the num-
ber of different contacts that users of a UK cell phone network
had with other users. Eagle combined two datasets: (i) a
behavioral dataset with over250 million cell phone users
whose geographical location within a region in the UK was
known, and (ii) a dataset with socio-economic metrics for each
region in the UK as compiled by the UK Civil Service. The
author found that regions with higher communication diversity
were correlated with lower deprivation indexes. Although this
result represents an important first step towards understanding
the impact of socio-economic parameters on mobile use at a



region level, we seek to elaborate more fine-grained impact
analyses that can draw correlations between socio-economic
parameters and behavioral models at even smaller scales e.g.
cities, neighborhoods.

To accomplish the latter goal, we require a more pre-
cise residential location(or an approximation) of the set of
anonymized users under study. However, telecommunication
carriers only obtain theresidential locationinformation for
subscribers that have a permanent contract with the provider,
which in the case of emerging and developing economies
accounts for less than a 5% of the total customer base (the
vast majority generally uses the pre-paid option).

While the evaluation of the impact of socio-economic
factors could be restricted to the cell phone users for which
residential location is known, we believe that such analysis
would not fairly span the large array of socio-economic
backgrounds present in emerging economies. In other words,
by considering a small fraction of the sample, any study would
bias the results towards individuals that have a contract with
the telecommunication company.

In this paper, we propose a novel technique to approximate
the residential locationof anonymized cell phone users based
on cell phone usage behavior starting from a small set of users
for whom their residential locationis known. Although we
demonstrate the process using Call Detail Records (CDRs)
from a telecommunications company, the technique presented
here could be potentially used to identify the residential
location from other types of web or SMS-based application-
specific recordse.g.,consulting a map, checking your email,
reading the news or checking the weather for the next day. By
associating cell phone users to geographical areas, we open
the field to compute and understand the impact that socio-
economic factors may have on the way people use mobile
phones at a country or a planetary scale.

The paper is organized as follows: Section II summarizes the
related work; Sections III and IV formalize the problem of res-
idential location classification and describe our solutionbased
on a genetic algorithm. Section V presents experimental results
using Call Detail Records of100, 000 anonymized individuals
from an emerging economy; and section VI summarizes the
most important conclusions and future work.

II. RELATED WORK

To the best of our knowledge, there are no previous
documented efforts to identify the residential location ofan
individual based on its cell phone behavioral fingerprint. The
lack of research in this area is understandable given that
until recently, the combination of behavioral and geo-location
information for cell phone users has only been available to
telecommunication companies. As new location-based services
become available, and the amount of datasets with behavioral
and geo-location information increases, we expect to see an
increase on identification algorithms for residential and work
location. This paper constitutes a first step in that direction.

The remainder of this section details previous studies that
may benefit from the residential location classification tech-

nique presented here. Kwonet al. [3] conducted a study to
understand the impact of demographics and socio-economic
factors on the technology acceptance of mobile phones. The
authors circulated a four-page survey with 33 questions to500
cell phone subscribers. They found that older subscribers felt
more pressure to accept the use of mobile phones than their
younger counterpart. In fact, the cell phones were generally
given as presents by family members for security purposes.

Donner [11] presented a survey of277 microentrepreneurs
and mobile phone users in Kigali, Rwanda, to understand
the types of relationships with family, friends and clients,
and its evolution over time. Among other findings, the author
discovered an inverse correlation between the age of the user
and the probability of adding new contacts to its mobile-based
social network. The author also claims that users with higher
educational levels were also more prone to add new contacts
to their social networks.

Reuben [12] studied the economic impact of the use of cell
phones on a fishing community in Kerala, India. Through the
use of cell phones, fishermen were able to respond quickly
to market demand and prevent unnecessary wastage of catch.
The author observed that mobile phones helped to coordinate
supply and demand, and merchants and transporters took ad-
vantage of the free flow of price information. The areas where
fishermen largely used cell phones experimented, accordingto
the author, an economic growth.

Many of these studies that correlate cell-phone based be-
havioral trends with socio-economic parameters, are typically
based on interviews or questionnaires to small groups of
individuals. Our technique offers the ability to expand these
studies to millions of users (without interfering with them) by
identifying their residential location and correlating their cell
phone behavioral usage to public datasets with geo-referenced
socio-economic information.

III. PROBLEM FORMULATION : IDENTIFYING RESIDENTIAL

LOCATION

Cell phone networks are built using a set of base transceiver
stations (BTS) that are responsible for communicating cell
phone devices within the network. Each BTS or cellular tower
is identified by the latitude and longitude of its geographical
location. The area covered by a BTS can be approximated
with Voronoi diagrams [13]. Call Detail Records (CDRs) are
generated whenever a cell phone connected to the network
makes or receives a phone call or uses a service (e.g., SMS,
MMS). In the process, the BTS details are logged, which gives
an indication of the geographical position of the user at the
time of the call. As mentioned earlier, although we focus on
the use of CDRs to model cell phone usage, records from other
application-specific services based on web or SMS could also
be used. From all the information contained in a CDR, our
study only considers the encrypted originating number, the
encrypted destination number, the time and date of the call,
the duration of the call, and the BTS that the cell phone was
connected to when the call was placed.



(a) Distribution of zip codes for an urban area.(b) Voronoi Diagram showing cell tower cover-
age areas for the same urban area.

(c) Overlapping of the Zip code map with the
Voronoi Diagram.

Fig. 1. Correspondence between Zip Codes and Cellular Towers.

Additionally, the subscribers that have a contract with
the carrier, have an indication of their residential location.
Throughout this paper, we assume that the residential indi-
cation corresponds to a zip code label that approximates the
residential locationof each anonymized subscriber. However,
the proposed technique would also work for other formulations
of location. While in advanced economies the percentage of
subscribers with a contract account for more than50%, in the
case of emerging economies, only∼ 5% of the total population
have a contract.

Given a CDR set (containing user cell phone calls for a
period of timeT ) and provided that the residential location
of the anonymized users is knowna priori (in a zip code
format), we seek to understand aresidential calling pattern
that characterizes the behavior of users placing or receiving
calls from their residential location. We characterize theresi-
dential calling patternby the days of the week as well as the
specific times of the day at which users make or receive calls at
their residential location. In the case of emerging economies,
where penetration rates of land lines are much lower than
the ones for mobile phones, it makes sense to assume that
a vast majority of the population also uses their cell phones
while being at home. The underlying assumption is that there
exists a shared behavioral fingerprint in each specific society
that characterizes social and cultural customse.g., suburban
individuals tend to be home by6pm whereas people in larger
cities tend to stay out longer hours and reach home later at
night.

We frame theresidential location problemas a classification
problem in which each individual is assigned a BTS that
represents her/his residential location. The construction of
the classifier is formalized as an optimization problem that
seeks to find the best combination of days of the week and
times of the day that characterize the calling pattern from
residential locations for the set of anonymized users (and their
calls) for whom their residential location is known. In other
words, we aim to discover theresidential calling patternthat
maximizes the the percentage of users for whom the BTS

assigned as residential location is correct. There is a wide
variety of techniques to solve optimization problems, and we
have selected Genetic Algorithms [14].

The residential calling patternobtained as solution after
processing the calls dataset, can then be used to systematically
identify the residential location of all the other pre-paid
customers lacking any information about their approximate
residential location.

Given that cell phone communications are handled by
cell towers (BTSs), the residential locations of the users are
computed as BTSs by the classification algorithm. However,
because the residence of the users knowna priori is typically
expressed using zip codes, we need to first compute the
correspondence between BTSs and zip codes before solving
the optimization problem.

IV. RESIDENTIAL LOCALIZATION ALGORITHM

The residential location classification algorithm consists of
two main steps: (i) compute the correspondence between the
residential location zip codes and the cellular towers, and
(ii) solve the optimization problem to identify the residential
calling pattern using Genetic Algorithms (GA).

From Zip Codes to Cellular Towers

As discussed previously, the residential location of cell
phone users with a contract is knowna priori. Specifically,
the residential location is provided as a zip code, althoughany
other geographical formalization could be used. Since the calls
made or received by the users are placed on cellular towers,
the network only allows us to identify as residential location a
cellular tower (or a set of cellular towers). Thus, we first need
to derive the geographical correspondence between zip codes
and cellular towers. With the transformation at hand, we will
be able to assign a specific set of BTSs to the zip code where
the individual claims to live.

To better illustrate the problem, Figure 1(a) shows a map
with the zip codes of an urban area. Figure 1(b) shows the
corresponding cellular towers that offer coverage to the area,



(a) Numerical representation of the zip code
map shown in Figure 1a computed by a scan
line algorithm.

(b) Numerical representation of the areas cov-
ered by Voronoi diagrams shown in Figure 1b
computed by a scan line algorithm.

(c) Output of the zip codes to cell towers
algorithm for zip code0001 as shown in Figure
1.

Fig. 2. Zip Codes to Cell Towers Algorithm: detecting the fractions of zip codes covered by each cellular tower.

which is approximated using Voronoi diagrams [13]. Every
time a user makes a phone call, the call is served by the
cellular tower that covers the geographical area where the user
is located. Figure 1(c) shows the intersection between the zip
code map and the Voronoi diagrams map.

We seek to associate to each zip code the set of cellular
towers (BTSs) whose Voronoi diagrams are partially (or to-
tally) included in the geographical area enclosed by the zip
code. With this approach, we can represent each zip codezci
as zci = s ∗ cta + v ∗ ctb + ... + w ∗ ctd where s, v, ...w
represent the fractions of the cellular towers Voronoi diagrams
cta, ctb,...,ctd that partially cover a certain zip codezci. The
final output will associate a list of cell towers to each zip
codei.e., zci = {cta, ctb, ...ctd}. For example, as can be seen
in Figure 1(c), zip code0001 could be represented as the list
of cell towers that cover its geographical areai.e., zc0001 =
0.5ct1+0.2ct2+0.2ct3+0.05ct4+0.05ct6. In our formalism, a
user with a zip code0001 associated to its residential location,
will now have it labeled as{ct1, ct2, ct3, ct4, ct6}.

The process to compute the correspondence between zip
code areas and Voronoi diagrams is executed as follows.
We assume that we initially have the zip code map for the
area under study. As a first step, we compute the Voronoi
coverage map for the set of cellular towers within that area
following Voronoi’s algorithm [13]. Next, for both zip code
and Voronoi coverage maps, we use ascan line algorithm
[15] to compute a numerical representation of each map. These
representations are then used to calculate the correspondence
between each zip code and the coverage of each cellular
tower (see Figure 2). Figure 2(a) shows the zip code map
previously shown in Figure 1(a), coded by the scan line
algorithm. The pixels in each zip code area are represented
by a number that indicates its membership to a specific zip
code; the borders between zip codes are represented with a
0. Figure 2(b) represents the Voronoi coverage map shown
in Figure 1(b), where the scanline algorithm assigns to each
pixel a number based on its membership to a specific Voronoi

Pseudocode 1From Zip Codes to Cell Towers.
obtain Zip Code Map for Urban Area
compute number-coded Zip Code Map< ZCmap >
compute Voronoi Diagrams for the Cell Towers in Urban Area
compute number-coded Voronoi Diagrams< V Dmap >
for each zip codezci in < ZCmap > do

counter[ct] = 0 ∀ ct ∈ < V Dmap >
total pixels counter = 0
for each pixelpj in < V Dmap > do

if pj ∈ zci then
counter[V Dmap(pj)] + +
total pixels counter + +

end if
end for
for each cellular towerctk in < V Dmap > do

if counter[ctk] > 0 then
zci.add(ctk, counter[ctk]/total pixels counter))

end if
end for

end for

coverage area. Finally, using the numerical representations
from Figures 2(a) and 2(b) we compute for each zip code,
the Voronoi areas included within the zip code’s geographical
limits and the corresponding coverage fractions. Figure 2(c)
shows an example of the output to compute the Voronoi areas
that cover zip code0001. Pseudocode1 shows the details of
the zip codes to cell towers algorithm.

The Optimization Problem

We have formalized theresidential location problemas
a classification problem that assigns to each user a BTS
representing her/his residential location. The identification of
the calling pattern that assigns users to residential BTSs is
formalized as an optimization problem solved with a Genetic
Algorithm (GA). The GA focuses on finding the combination
of days of the week and times of the day that best characterize
the residential calling patternof all the anonymized users
for whom both their residential location (zip code) and cell



phone calls (CDRs) are known. The residential location of
the users is transformed from zip codes to lists of cellular
towers (BTSs) using the algorithm described in the previous
section. The optimization problem is solved using the JGAP
implementation of GAs [16]. Next, we give a brief introduction
to Genetic Algorithms and describe its main components for
the residential location problem.

Introduction to Genetic Algorithms:Genetic Algorithms
(GA) are search algorithms based on the mechanics of natural
selection tailored for vast and complex search spaces [17].
A GA starts with a population of abstract representations
(called chromosomes) of candidate solutions (individuals)
that is forced to evolve towards improved sets of solutions
(populations). A chromosome is composed of several genes
that code the value of a specific variable of the solution. Each
gene is typically represented as a string of 0s and 1s. During
the simulated evolution, individuals from one generation are
used to form a new generation, which is (hopefully) closer
to the optimum solution. The idea of survival of the fittest
is of great importance to genetic algorithms. GAs use a
fitness function in order to evaluate the quality of the solution
represented by a specific individual. The fittest individuals will
be used to create new, and conceivably better, populations.
In each generation, the GA creates a new set of individuals
obtained from recombining the fittest solutions of the previous
generation (crossover), occasionally adding random new data
(mutation) to prevent the population from stagnating. This
generational evolution is repeated until some condition (for
example number of populations or improvement of the best
solution) is satisfied. Hereby, we will refer toindividual as a
candidate solution being evaluated by the GA, and touseras
a subscriber with cell phone calls whose residential location
we want to identify.

In our context, the Genetic Algorithm takes as input the
set of cell phone calls (CDRs) made by the users in the
dataset, and their residential locations each expressed asa
list of cellular towers. Each individual (candidate solution),
designed to capture theresidential calling pattern, is evaluated
by a fitness function that computes the number of users for
whom the residential location is correctly assigned. After
stability is reached, the optimal solution will contain thevalues
that best characterize theresidential calling pattern. In the
next subsections, we describe in detail the chromosome and
its genes, the fitness function, the GA architecture and its
configuration.

Description of the Chromosome and Genes:We define a
chromosome composed of three different genes (see Figure 3).
The first two genes represent thestarting timeand thefinishing
time i.e.,the range that defines the time period under which
users make cell phone calls from their residential location.
Each time variable is composed of seven bits, which divides
the day in fractions of11.25 minutes each. Finally, the third
gene represents thedays of the weekwhen users typically
make cell phone calls from their residential location. Eachbit
of this field represents one day of the weeke.g.,1000000 is
Sunday,0100000 is Monday, and1000001 comprises Saturday

Fig. 3. Scheme of the chromosome and its genes.

and Sunday.
Each individual (candidate solution) is evaluated by com-

puting, for each user, the list of cellular towers that comply
with the requirements established by the values of the genes.
For example, if an individual has the values(22 : 11 : 00, 07 :
33 : 00, 1000001), we compute for each user the cellular tower
that handled calls on Saturdays and Sundays during the time
range22 : 11 : 00 − 07 : 33 : 00.

It may be the case that more than one cellular tower
complies with the requirements of the candidate solution. If
that is the case, the cell tower with the highest number of calls
is selected. Finally, if the resulting cellular tower is included in
the list of BTSs that cover the user’s zip code, the residential
location is considered correct. On the other hand, it may be the
case that some users do not make phone calls during the days
or times specified by the candidate solution, in which case,
that specific user is not assigned any cell tower as residential
location.

Fitness Function:In order to evaluate the overallquality
of each candidate solution, we define the fitness function
using the accuracy and the coverage of theresidential calling
pattern described by the individual. We defineaccuracyas
the percentage of users for whom the calling pattern correctly
assigns as residential location one of the cellular towers in the
user’s cellular towers list associated to its zip code. On the
other hand,coverageis defined as the percentage of users from
the dataset that are assigned a cell tower (correct or incorrect)
as residential location.

The fitness function is defined asfitness = p∗coverage+
q∗accuracy where the values ofp andq are weights assigned
to each of the two measures depending on the significance we
want to give to the accuracy and the coverage of the algorithm.
The optimal values for these weights are computed by testing
the performance of the Genetic Algorithm across different
ranges. We refer the reader to the experimental section V for
further details on the calibration of these weights.

GA Configuration & Architecture: In order to evaluate
the fitness function, we need to process all the calls made
or received by each user. Given that CDR datasets contain
millions of cell phone calls that account for gigabytes of data,
we have designed an architecture that allows for the evaluation
in parallel of large populations of individuals.

Specifically, we have chosen theshared-pool modelarchi-
tecture (see Figure 4), where each process (or island) executes
a local genetic algorithm and periodically exchanges candidate
solutions with other islands through the shared pool [18].

In our architecture, each process is initialized with a
randomly generated population of50 individuals. At every
generation, the reproduction is carried out for a90% of the
total population; the crossover is executed with a35% of pairs
of the selected population by randomly selecting a gene in each



Fig. 4. GA Distributed Architecture: Shared-Pool Model.

individual and exchanging its content with its partner; andthe
mutation is executed for each gene with a probability of1/12
and by randomly creating a new gene. Next, the fitness value
for each individual is evaluated and the population is ordered
by decreasing fitness values. The fittest individual is always
moved to the next generation, and all the other individuals
have a probability of being brought to the next generation
proportional to their fitness value.

Each process is executed on one core and runs in parallel
with the other processes in our architecture of four dual-core
Intel processors2. In order to increase heterogeneity in the
population explored by each process, every20 generations
five individuals migrate to the shared pool. The migrants
are selected using the roulette wheel selectori.e., the better
the fitness of the individual is, the higher the probability of
migrating is. Upon migration, the process retrieves from the
shared pool another five individuals and replaces the previous
population using an inverse roulette wheeli.e., the worse the
fitness of the individual is, the higher the probability thatit
will be substituted by a migrant from the shared pool.

V. EXPERIMENTAL RESULTS

In this section we introduce the dataset, we describe the
setup of the shared-pool model architecture and discuss the
evaluation of the results obtained, both globally and by age
groups.

CDR Dataset and Setup

Our initial CDR dataset contains5 months of cell phone
calls collected from100, 000 residential subscribers in a city
from an emerging economy. We exclude users that do not

2Dell Precision T7400 with 3.4GHz, 64-bits, and 32GB of memory

meet an average of at least two calls per day in an attempt
to eliminate subscribers that use cell phones sporadicallyand
minimize systematic uncertainties due to calling behaviors
based on very few calls. All subscribers have a cell phone
contract with the same carrier, and both their zip code resi-
dential location and age are known.

The shared-pool model architecture was setup with four
computers of eight cores each, which allows us to run up to
32 different processes (islands). Since each island is initiated
with 50 randomly generated individuals, the architecture can
explore1600 individuals per generationi.e., we can explore a
large number of parameter combinations in little time.

In order to determine aresidential calling pattern, we first
apply the algorithm to match each zip code in the city to
a list of cell towers that offer coverage to the associated
geographical area (see Pseudocode I). This pre-processing
associates to each subscriber a list of cell towers that represent
their residential locations. After that, we start the genetic
algorithm in each one of the32 islands with 50 randomly
generated individuals and make them evolve until a stable state
(a solution) is reached.

Analysis of Results

In order to understand the evolution of the genetic algo-
rithm, we compute both the fitness and the Hamming distance
at each generation. The fitness function helps us understandthe
quality of the solutions being explored: the higher the value,
the better the solution in terms of accuracy and coverage. The
Hamming distance is used to measure thediversity of the
individuals being explored at each generation [19]. As the GA
gets closer to the optimal solution, the individuals explored are
expected to be more similar among themselves and thus have
Hamming distances closer to zero.

As explained in Section IV, the fitness function can give
different weights to the accuracy and the coverage of the
individuals. To explore the impact that valuesp and q may
have in the fitness function, we evaluate the fitness values for
the following combinations(p = 0.4, q = 0.6), (p = 0.3, q =
0.7), (p = 0.2, q = 0.8), (p = 0.1, q = 0.9). Figure 5(a)
shows the evolution of the fitness function values for each
pair (p, q). Each pair is evaluated using8 cores (islands) that
are booted with50 randomly generated individuals. For each
generation, the fitness value shown per pair(p, q) is the best
across all8 islands (400 individuals) explored. We can observe
that the best fitness values are associated to the combination
(p = 0.4, q = 0.6) reaching fitness values of up to 75 after
10 generations, and showing small incremental improvements
over time. Other combinations reach stability later (after20 to
60 generations) with smaller fitness values.

Figure 5(b) shows the evolution of the Hamming distance
over time. For each generation and combination(p, q), we
plot the Hamming distance of the individuals from the island
that reached the best fitness function. We observe that after
approximately 10 generations the Hamming distance decreases
significantly showing that a firstgoodsolution has been found.
Every 20 generations, when the islands exchange individuals,
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Fig. 5. Evolution of the Genetic Algorithm over time for different weight combinations (p,q) in the fitness function.
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Fig. 6. Accuracy and Coverage values for each combination ofweights (p,q)
in the fitness function. The pairs (accuracy,coverage) represent the quality of
individuals evaluated over time.

we observe a periodic increase in the Hamming distance due
to the diversity introduced by the migrants. However, after
approximately60 generations, the Hamming distance reaches a
value of0, thus confirming that a stable state has been reached.
Small bumps in the distance are observed subsequently, these
mainly relate to randomly generated individuals that are peri-
odically explored by each individual island.

To better understand the meaning behind the fitness func-
tion, Figure 6 depicts the accuracy versus the coverage values
for each combination(p, q). Each pair in the plots, represents
the coverage and the accuracy of the solutions (individuals)
explored by any of the islands associated to each(p, q) over
time until a stable state is reached (in terms of fitness values
and Hamming distances). If two individuals share the same
coverage, the best accuracy value is plotted. As confirmed in
Figure 5(a), we observe that the best combination of weights
is (p = 0.4, q = 0.6), yielding accuracies of up to61% with
a coverage of nearly95%. Thus, we have found aresidential
calling patternthat reveals the residential location for almost
all subscribers with an accuracy of61%. The residential call-
ing patternwas found for days Monday, Wednesday, Saturday
and Sunday from15 : 45 : 00 to 11 : 03 : 45.

Although the genetic algorithm reaches high coverage val-
ues, the accuracy does not seem to increase beyond61%. This
means that there exists a39% of subscribers for whom their
residential location was wrongly predicted. In an attempt to
dig into the causes of these wrong classifications, we studied
the list of cell towers that the candidate solutions (individuals)
assigned to the users as potential residential locations. Recall
that the algorithm selects as the residential location, thecell
tower that has the highest number of cell phone calls among
all the cell towers that comply with the requisites specifiedin
the genes. We observed that for many of the users that were
wrongly classified, there existed very little difference between
the number of calls in the first and the second most used
towers. Thus, we decided to add an extra condition in the
assignment of the residential location. A user is assigned a
cell tower as residential location, if and only if the difference
in percentage of total calls between the first and the second cell
towers represents a minimum percentager. If the difference
between these two towers is smaller than the percentager
required, the user is not assigned a residential location.

This extra condition attempts tocleanthe behavioral signal
related to theresidential calling patternby not stating a
residence location unless the differences between the two
most predominant calling behaviors in a user are sufficiently
large. Although this condition lowers the coverage, we aim to
increase the accuracy of the residential location classification.
We explored values forr from 0% to 30%, where 0%
represents the case initially explored that yielded accuracies
of up to 61%.

Figure 7 shows, for(p = 0.4, q = 0.6), the coverage and the
accuracy reached by the genetic algorithm when we require
a minimum percentager of difference between the first and
the second cell towers in order to assign a residential location
to each user. As in Figure 6, each pair (accuracy, coverage)
represents the quality of the solutions evaluated by any of the
individuals explored across all islands until a stable state is
reached (in terms of fitness values and Hamming distances).
We observe that very good values are obtained whenr = 25%
with accuracies of over72% and a coverage of up to40% or
when r = 20% with accuracies of approximately70% and



25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76

% Coverage

%
 A

cc
ur

ac
y

 

 

  0 %  10 %  15 %  20 %  25 %  30 %

Fig. 7. Accuracy and Coverage values for various percentages r of difference
in the number of total calls between the first and the second most used
cell towers. The pairs (accuracy,coverage) represent the quality of individuals
evaluated over time.

a coverage around50%. The residential calling patternfor
the latter was represented by the following candidate solution:
days Monday, Tuesday, Friday, Saturday and Sunday from17 :
15 : 00 to 8 : 26 : 15.

Impact of the Misclassification in the Correlation Analysis

The final aim of the residential location algorithm is to
assign a residential location to each user. These locations
are then used to associate users to geographical regions that
have been characterized by specific socio-economic factors.
Potential correlations between these socio-economic parame-
ters and cell phone use might give us an insight into human
behavior and technology usage. It may be argued that while the
residential location of a70% of the users is correctly classified,
there might a noticeable effect on the correlation analysesfrom
the remaining30% users that have been misclassified.

In order to quantify such effects, for each misclassified user
we computed the distance between the cell tower incorrectly
identified as residential location by the algorithm and the
centroid of the group of cell towers associated to her/his
residential zip code. Figure 8 shows a CDF that represents the
percentage of users for whom the error distance between real
and predicted residential location was smaller than a certain
distance measured inkm. It can be observed that for82%
of the misclassified users, the error distance is smaller than
10km. These erroneous residential classifications might be
related to traffic being forwarded through other close-by cell
towers or to users who failed to notify changes of residency.In
any case, the impact of this small error in further correlation
analyses will be minimal.

Analysis by Age Ranges

In an attempt to improve our classification rates and to
study the impact of age in the identification of residential
location, we run a separate genetic algorithm (with its shared-
pool architecture) for each age range considered: (18–24),(25–
34),(35–44), (45–54), (55–69).
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Fig. 8. CDF showing the percentage of misclassified users whose error
distance between the real and the detected residential location is smaller than
a certain value.
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Fig. 9. Accuracy and Coverage values per age range obtained by the
individuals explored by the genetic algorithm across all islands until stable
states are individually reached.

Figure 9 shows, for(p = 0.4, q = 0.6) and r = 20%, the
coverage and accuracy for each age range. Each pair (cover-
age, accuracy) specifies the quality of the solution represented
by the individuals explored by each genetic algorithm until
stable states are individually reached (in terms of fitness values
and Hamming distances). In fact, by dividing users by age
ranges, we observe an improvement in the accuracy for certain
age groups. This result also implies that different age groups
have distinctresidential calling patternsand as a result some
age groups might be more predictable than others. For the
ranges considered, the age range (18–24) showed the highest
improvement, reaching accuracies of up to80% with a 40%
coverage, with theresidential calling patternbeing Monday,
Wednesday and Friday from17 : 37 : 30 to 7 : 18 : 45.

Solution Degradation

Given that genetic algorithms are computationally expen-
sive, minimizing the cost of the fitness function evaluation
is particularly relevant. To this end, we want to understand
to which extent the accuracy and coverage of the solutions



DataSet Size Accuracy Coverage Processing Time

4 months 67.21% 49.03% 3.59s
3 months 66.57% 48.89% 2.67s
2 months 65.46% 48.32% 1.94s
1 month 64.51% 46.56% 1.15s
2 weeks 62.04% 45.61% 0.73s
1 week 59.00% 44.51% 0.49s

TABLE I
ACCURACY, COVERAGE AND PROCESSINGT IME VALUES FOR CDR

DATASETS OF DIFFERENT SIZES.

degrade depending on the size of the CDR dataset being
processed. With smaller CDR datasets, the time it takes to
evaluate each subscriber’s residential location and the final
solution will be reduced, but the information available to
identify cell phone behavioral patterns will be more limited.

To quantify the degradation, we divided the initial5 month
CDR dataset into different sets of smaller size ranging from4
months to1 week each. For each one of these CDR subsets,
we ran the genetic algorithm with the shared-pool model
and let it evolve until a stable solution (in terms of fitness
values and Hamming distance) was reached. Table I shows, for
each dataset size, the accuracy, the coverage, and the average
time needed to process one candidate solution. The accuracy
and coverage values are computed as the average of these
measurements throughout all possible temporal datasets with
the same sizee.g., we compute the accuracy for all the1
week sets and report the average of these measurements. The
processing time represents the average time needed to evaluate
one individual (candidate solution) for each CDR dataset.

In general, we observe that as the CDR dataset shrinks
in size, the accuracy and coverage of the best solutions also
decrease in an almost linear way. Additionally, the time needed
to compute the residential locations also decreases linearly. In
general, the selection of the optimal CDR-dataset size depends
on the computational capabilities available and the expected
quality of the solutioni.e., better accuracy and coverage over
longer processing times orvice versa.

VI. CONCLUSIONS ANDFUTURE WORK

The pervasiveness of cell phones in emerging and devel-
oping economies is generating large datasets with millionsof
interactions and cell-phone usage traces which are anonymized
and stored in real time. These datasets have enabled, for the
first time in history, a variety of technology-usage analyses at
a country-scale level, increasing the samples available from
small groups of interviewed users.

In this paper, we have presented a technique to identify the
approximateresidential locationof anonymized cell phone
users based on their calling behavior. By associating cell
phone users to geographical areas, we have opened the door to
compute and understand the impact of socio-economic factors
on the way people use mobile phones at very large scales.

Our technique aims to find aresidential calling patternthat
characterizes the behavioral fingerprint of subscribers within
a geographical area. We have framed this characterization as

an optimization problem that seeks to understand the times of
the day and days of the week at which the bulk of subscribers
use their phones from their residential locations. Our results
show that we can achieve accuracy rates of around61% with a
coverage up to95%. We have also explored a more constrained
technique that aims to improve the accuracy by decreasing the
coverage, obtaining an accuracy of70% with a coverage of
50%. Age based analysis indicates that if the age information
is available, a higher accuracy can be obtained by producing
independent GAs for each age group. Finally, we have shown
that more than80% of the users whose residential location
was misclassified show distance errors smaller than10km.

Although different cities will reveal distinct calling patterns,
we believe that this paper represents a template solution for
the automatic detection of the residential location based on
cell phone usage data.

Future work will focus on using the technique presented
to compute the residential location of subscribers across dif-
ferent cities in emerging economies. By characterizing each
subscriber using the cell phone behavior and the residential
location, we will be able to understand whether there exist
correlations between socio-economic factors associated to dif-
ferent geographical areas and cell phone usage at country or
planetary scales.
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