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Abstract—Studies to understand the impact that demographic technology use and experiences. Although personal irgesyi
and socio-economic factors have in the use of cell phones leav offer important insights that can be helpful towards thercha
been traditionally carried out by social and technical resarchers acterization of technology usage, these are generallyimi

through the use of questionnaires and personal interviewsln t I b f individuals that ther intervi d
recent years, and due to the pervasiveness of cell phones in_O a small_ number of individuals that are either interviewe

emerging and developing economies, large datasets with tiwns N PErson, or_have answered a questi(_)nr_1aire about cell phone
of interactions are generated, anonymized and stored in rddime  usage. Despite the best efforts, the limited number of users
by telecommunication and internet companies. However, ttee that participate in the study may introduce an implicit bias
datasets do not typically contain any socio-economic infonation the analysis

that characterizes the users. As a result, in order to undetsind D to th . f Il oh . .
the impact of socio-economic parameters on the use of mobile °2U€ 10 (e pervasiveness of cell phones in emerging

phones at |arger sca|esl researchers have typ|ca||y coragied economies, |arge datasets with millions of interactiond a-n
the behavioral analyses drawn from the anonymous cell phone cell-phone usage traces are currently generated, anoagimiz

usage datasets to aggregated demographic or socio-economiand stored in real time. Telecommunication companies als wel
parameters compiled by institutions like the National Statstical as internet companies with mobile services have increasing

Institutes (NSI) or the World Bank (WB). In order to compute . I~
these correlations, the approximateresidential location of the &CCeSS to such data. These rich datasets facilitate a large

anonymized users is required. In general, carriers only hag Variety of cell phone use analyses in the areas of behavioral
such information for users with a contract, which in emerging analysis [4], human mobility [5], social networks [6], and
economies accounts for less than &%. In this paper, we pro- SMS or web-based m-services [7], [8] at a national scale.
pose a new technique to automatically predict the approxime |, aqgition to widely expanding the samples of individual
residential location of anonymized cell phone users based on . tervi dataset | far | intrusi il
their calling behavior, assuming that we have a small set of n erVIQWS, atase anayses_ are a_r ess 'n FUSIYG asiehdi
users for whom their approximate residential location is known behavior can be studied without interfering with the users.
(the subscribers with a contract). Our results indicate tha we Such techniques provide a complementary research tool over
can correctly predict the residential location of up to 70% of traditional qualitative approaches [9].
users with a coverage of50%. By automatically associating cell - nfortunately, most large datasets with cell phone usage
phone users to geographical areas, we aim to provide a tool & tt d t tai d hi . .
facilitates the analysis — at a national or global scale — ofhe Pa ems, 0 no an er.l any demographic or soclo-economic
impact that socio-economic factors might have in the use ofetl information about individual users. To better understamal t
phones. impact of socio-economic parameters on the use of mobile

Index Terms—Cell phones in emerging and developing phones, researchers have typically correlated the befavio
economies, socio-economic analyses, behavioral modelim@d  gnajyses drawn from the cell phone usage datasets to aggre-
characterization, data mining . . . .

gated demographic or socio-economic parameters compjled b

social researchers and ethnographers at institutions asch

) ] ) o ] the World Bank, United Nations or country-based National
The adoption of information technologies in emerging angatistical Institutes (NSI).

developing economieshas attracted the interest of many so- gqr instance, Eagle [10] studied the correlation between
cial and technical researchers trying to understand th@epcommunication diversity and its index of deprivation in the
that demographic and socio-economic factors have in the YR The communication diversity was derived from the num-
of technologies [1], [2], [3]. Such analyses are of intettest per of different contacts that users of a UK cell phone neftwor
both policy makers interested in the assessment of techpolonsg with other users. Eagle combined two datasets: (i) a
based programs, as well as technologists focusing on ¥havioral dataset with ovezs0 million cell phone users
development of personalized services for emerging ecog®miynose geographical location within a region in the UK was
Studies that analyze demographic or socio-economic dispafnown, and (ii) a dataset with socio-economic metrics fahea
ties in the access to technology, are typically based oropats region in the UK as compiled by the UK Civil Service. The
interviews that correlate individual parameters to peasoryythor found that regions with higher communication diitgrs

1 _ were correlated with lower deprivation indexes. Althougist
Based on the 2009 International Monetary Fund

(IMF) World Economic Outlook Country Classification resu_lt represents _an important first step towards un_dem;tgn
www.imf.org/external/pubs/ftiweo/2009/02/weodatalgps.htm the impact of socio-economic parameters on mobile use at a

I. INTRODUCTION



region level, we seek to elaborate more fine-grained impatdtue presented here. Kwaet al. [3] conducted a study to
analyses that can draw correlations between socio-ec@nonmderstand the impact of demographics and socio-economic
parameters and behavioral models at even smaller scales fagtors on the technology acceptance of mobile phones. The
cities, neighborhoods. authors circulated a four-page survey with 33 questiorig)to

To accomplish the latter goal, we require a more preell phone subscribers. They found that older subscritedts f
cise residential location(or an approximation) of the set of more pressure to accept the use of mobile phones than their
anonymized users under study. However, telecommunicatipsunger counterpart. In fact, the cell phones were generall
carriers only obtain theesidential locationinformation for given as presents by family members for security purposes.
subscribers that have a permanent contract with the provide Donner [11] presented a survey 7 microentrepreneurs
which in the case of emerging and developing economiead mobile phone users in Kigali, Rwanda, to understand
accounts for less than a 5% of the total customer base (the types of relationships with family, friends and clignts
vast majority generally uses the pre-paid option). and its evolution over time. Among other findings, the author

While the evaluation of the impact of socio-economidiscovered an inverse correlation between the age of the use
factors could be restricted to the cell phone users for whigmd the probability of adding new contacts to its mobilecnas
residential location is known, we believe that such analyssocial network. The author also claims that users with highe
would not fairly span the large array of socio-economieducational levels were also more prone to add new contacts
backgrounds present in emerging economies. In other worttstheir social networks.
by considering a small fraction of the sample, any study woul Reuben [12] studied the economic impact of the use of cell
bias the results towards individuals that have a contrattt wphones on a fishing community in Kerala, India. Through the
the telecommunication company. use of cell phones, fishermen were able to respond quickly

In this paper, we propose a novel technique to approximatemarket demand and prevent unnecessary wastage of catch.
the residential locationof anonymized cell phone users basetthe author observed that mobile phones helped to coordinate
on cell phone usage behavior starting from a small set ouseupply and demand, and merchants and transporters took ad-
for whom theirresidential locationis known. Although we vantage of the free flow of price information. The areas where
demonstrate the process using Call Detail Records (CDRighermen largely used cell phones experimented, accotding
from a telecommunications company, the technique pregentge author, an economic growth.
here could be potentially used to identify the residential Many of these studies that correlate cell-phone based be-
location from other types of web or SMS-based applicatiorgyioral trends with socio-economic parameters, are afiyic
specific recorde.g.,consulting a map, checking your emailpased on interviews or questionnaires to small groups of
reading the news or checking the weather for the next day. B\ividuals. Our technique offers the ability to expandste
associating cell phone users to geographical areas, we opgltlies to millions of users (without interfering with thehy
the field to compute and understand the impact that socigentifying their residential location and correlatingihcell
economic factors may have on the way people use mobgfone behavioral usage to public datasets with geo-refecen

phones at a country or a planetary scale. socio-economic information.

The paper is organized as follows: Section Il summarizes the
related work; Sections Il and IV formalize the problem of+e |||  ProBLEM FORMULATION: IDENTIEYING RESIDENTIAL
idential location classification and describe our solutased L OCATION

on a genetic algorithm. Section V presents experimentaltes
using Call Detail Records dfo0, 000 anonymized individuals  Cell phone networks are built using a set of base transceiver
from an emerging economy; and section VI summarizes titations (BTS) that are responsible for communicating cell
most important conclusions and future work. phone devices within the network. Each BTS or cellular tower
is identified by the latitude and longitude of its geograghic
location. The area covered by a BTS can be approximated
To the best of our knowledge, there are no previowsith Voronoi diagrams [13]. Call Detail Records (CDRs) are
documented efforts to identify the residential locationaof generated whenever a cell phone connected to the network
individual based on its cell phone behavioral fingerprittieT makes or receives a phone call or uses a service (e.g., SMS,
lack of research in this area is understandable given thAMS). In the process, the BTS details are logged, which gives
until recently, the combination of behavioral and geo-tama an indication of the geographical position of the user at the
information for cell phone users has only been available tone of the call. As mentioned earlier, although we focus on

II. RELATED WORK

become available, and the amount of datasets with behaviapplication-specific services based on web or SMS could also
and geo-location information increases, we expect to see la used. From all the information contained in a CDR, our
increase on identification algorithms for residential aratkv study only considers the encrypted originating number, the
location. This paper constitutes a first step in that dicecti encrypted destination number, the time and date of the call,

The remainder of this section details previous studies ththe duration of the call, and the BTS that the cell phone was
may benefit from the residential location classificationhtec connected to when the call was placed.



(a) Distribution of zip codes for an urban arga) Voronoi Diagram showing cell tower covefte) Overlapping of the Zip code map with the
age areas for the same urban area. Voronoi Diagram.

Fig. 1. Correspondence between Zip Codes and Cellular Bower

Additionally, the subscribers that have a contract withssigned as residential location is correct. There is a wide
the carrier, have an indication of their residential lomati variety of techniques to solve optimization problems, ared w
Throughout this paper, we assume that the residential intiave selected Genetic Algorithms [14].
cation corresponds to a zip code label that approximates théhe residential calling patternobtained as solution after
residential locationof each anonymized subscriber. Howeveprocessing the calls dataset, can then be used to systatiyatic
the proposed technique would also work for other formutetio identify the residential location of all the other pre-paid
of location. While in advanced economies the percentage mfstomers lacking any information about their approximate
subscribers with a contract account for more thaf%, in the residential location.
case of emerging economies, orly5% of the total population  Given that cell phone communications are handled by
have a contract. cell towers (BTSs), the residential locations of the usees a

Given a CDR set (containing user cell phone calls for @mputed as BTSs by the classification algorithm. However,
period of timeT") and provided that the residential locatiorbecause the residence of the users knawgriori is typically
of the anonymized users is knowa priori (in a zip code expressed using zip codes, we need to first compute the
format), we seek to understandresidential calling pattern correspondence between BTSs and zip codes before solving
that characterizes the behavior of users placing or remgivithe optimization problem.
calls from their residential location. We characterize tbs-
dential calling patternby the days of the week as well as the IV. RESIDENTIAL LOCALIZATION ALGORITHM
specific times of the day at which users make or receive calls aThe residential location classification algorithm corssist
their residential location. In the case of emerging ecoesmitwo main steps: (i) compute the correspondence between the
where penetration rates of land lines are much lower thagsidential location zip codes and the cellular towers, and
the ones for mobile phones, it makes sense to assume {lixtsolve the optimization problem to identify the residiah
a vast majority of the population also uses their cell phonealling pattern using Genetic Algorithms (GA).
while being at home. The underlying assumption is that there )
exists a shared behavioral fingerprint in each specific gocié™m Zip Codes to Cellular Towers
that characterizes social and cultural custosg, suburban  As discussed previously, the residential location of cell
individuals tend to be home §pm whereas people in largerphone users with a contract is knovanpriori. Specifically,
cities tend to stay out longer hours and reach home latertlé residential location is provided as a zip code, althcaugh
night. other geographical formalization could be used. Since #fis c

We frame theaesidential location probleras a classification made or received by the users are placed on cellular towers,
problem in which each individual is assigned a BTS thahe network only allows us to identify as residential locata
represents her/his residential location. The constroctid cellular tower (or a set of cellular towers). Thus, we firsede
the classifier is formalized as an optimization problem th&b derive the geographical correspondence between zipscode
seeks to find the best combination of days of the week aadd cellular towers. With the transformation at hand, wé wil
times of the day that characterize the calling pattern frolre able to assign a specific set of BTSs to the zip code where
residential locations for the set of anonymized users (heit t the individual claims to live.
calls) for whom their residential location is known. In othe To better illustrate the problem, Figure 1(a) shows a map
words, we aim to discover thesidential calling patterrthat with the zip codes of an urban area. Figure 1(b) shows the
maximizes the the percentage of users for whom the BT®rresponding cellular towers that offer coverage to tleaar
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(a) Numerical representation of the zip coff® Numerical representation of the areas c@) Output of the zip codes to cell towers
map shown in Figure 1a computed by a saard by Voronoi diagrams shown in Figure ahgorithm for zip codeé001 as shown in Figure
line algorithm. computed by a scan line algorithm. 1.

Fig. 2. Zip Codes to Cell Towers Algorithm: detecting thecfians of zip codes covered by each cellular tower.

which is approximated using Voronoi diagrams [13]. Everfyseudocode TFrom Zip Codes to Cell Towers.
time a user makes a phone call, the call is served by thedbtain Zip Code Map for Urban Area
cellular tower that covers the geographical area wheregpe u  compute number-coded Zip Code MapZCmap >
is located. Figure 1(c) shows the intersection between ifne z compute Voronoi Diagrams for the Cell Towers in Urban Area
- F1g o compute number-coded Voronoi DiagrarisV Dmap >
code map and the Voronoi diagrams map. for each zip codeci in < ZCmap > do
We seek to associate to each zip code the set of cellular counter_[ct] =0Vct € <VDmap >
towers (BTSs) whose Voronoi diagrams are partially (or to- total_pizels_counter =0

tally) included in the geographical area enclosed by the zip forife;f:hep';(f;p{h'gf VDmap > do

code. With this approach, we can represent each zip eede counter[V Dmap(pj)] + +
aszci = s*cty + v xcty + ... +w * ctg wheres,v,..w total_pixels_counter + +
represent the fractions of the cellular towers Voronoi chags end if
ctq, cty,...ctq that partially cover a certain zip codei. The end for

final output will associate a list of cell towers to each zip forifezihnf:y[liﬁr] t;)vge{:glg n'n < VDmap > do

codei.e., zci = {ctq, cty, ...ctq}. FOr example, as can be seen zci.add(ctk, counter [ctk] /total_pizels_counter))
in Figure 1(c), zip cod®001 could be represented as the list end if

of cell towers that cover its geographical aiiga, zc0001 = end for

0.5¢t14-0.2¢t540.2¢t340.05¢t44-0.05¢t. In our formalism, a __end for

user with a zip code001 associated to its residential location,

will now have it labeled agct1, cto, cts, cty, ctg}.

The process to compute the correspondence between G@yerage area. Finally, using the numerical representtio
code areas and Voronoi diagrams is executed as follof®m Figures 2(a) and 2(b) we compute for each zip code,
We assume that we initially have the zip code map for tHBe Voronoi areas included within the zip code’s geogragihic
area under study. As a first step, we compute the Vororits and the corresponding coverage fractions. Figuig 2(
coverage map for the set of cellular towers within that aréows an example of the output to compute the Voronoi areas
following Voronoi's algorithm [13]. Next, for both zip code that cover zip cod®001. Pseudocodé shows the details of
and Voronoi coverage maps, we uses@an linealgorithm the zip codes to cell towers algorithm.

[15] to compute a numerical representation of each map.érhe%1

representations are then used to calculate the correspcde
between each zip code and the coverage of each cellulaiVe have formalized theesidential location problemas
tower (see Figure 2). Figure 2(a) shows the zip code mapclassification problem that assigns to each user a BTS
previously shown in Figure 1(a), coded by the scan linepresenting her/his residential location. The identificaof
algorithm. The pixels in each zip code area are representhd calling pattern that assigns users to residential BESs i
by a number that indicates its membership to a specific Zgrmalized as an optimization problem solved with a Genetic
code; the borders between zip codes are represented witAlgorithm (GA). The GA focuses on finding the combination
0. Figure 2(b) represents the Voronoi coverage map showhdays of the week and times of the day that best characterize
in Figure 1(b), where the scanline algorithm assigns to eattte residential calling patternof all the anonymized users
pixel a number based on its membership to a specific Vororfor whom both their residential location (zip code) and cell

e Optimization Problem



phone calls (CDRs) are known. The residential location \(Starting Time (7 bits)[Finishing Time (7 bits) Days of week (7 bits))
the users is transformed from zip codes to lists of cellular
towers (BTSs) using the algorithm described in the previous Fig. 3. Scheme of the chromosome and its genes.
section. The optimization problem is solved using the JGAP
implementation of GAs [16]. Next, we give a brief introdweti
to Genetic Algorithms and describe its main components fand Sunday.
the residential location problem Each individual (candidate solution) is evaluated by com-
Introduction to Genetic AlgorithmsGenetic Algorithms puting, for each user, the list of cellular towers that compl
(GA) are search algorithms based on the mechanics of natwith the requirements established by the values of the genes
selection tailored for vast and complex search spaces [1Fbr example, if an individual has the valug® : 11 : 00,07 :
A GA starts with a population of abstract representatiorss : 00, 1000001), we compute for each user the cellular tower
(called chromosomes) of candidate solutionsifdividuals) that handled calls on Saturdays and Sundays during the time
that is forced to evolve towards improved sets of solutiomange22 : 11 : 00 — 07 : 33 : 00.
(populations). A chromosome is composed of several geneslt may be the case that more than one cellular tower
that code the value of a specific variable of the solutionhEacomplies with the requirements of the candidate solutibn. |
gene is typically represented as a string of Os and 1s. Duritigt is the case, the cell tower with the highest number d$ cal
the simulated evolution, individuals from one generatioe ais selected. Finally, if the resulting cellular tower islinded in
used to form a new generation, which is (hopefully) closehe list of BTSs that cover the user’s zip code, the residénti
to the optimum solution. The idea of survival of the fitteslocation is considered correct. On the other hand, it maybe t
is of great importance to genetic algorithms. GAs use aase that some users do not make phone calls during the days
fitness function in order to evaluate the quality of the solut or times specified by the candidate solution, in which case,
represented by a specific individual. The fittest individuaill  that specific user is not assigned any cell tower as resalenti
be used to create new, and conceivably better, populatiolgation.
In each generation, the GA creates a new set of individualsFitness Function:In order to evaluate the overadjuality
obtained from recombining the fittest solutions of the pvegi of each candidate solution, we define the fitness function
generation (crossover), occasionally adding random new dasing the accuracy and the coverage of ibsdential calling
(mutation) to prevent the population from stagnating. Thisattern described by the individual. We defireeccuracyas
generational evolution is repeated until some conditiar (fthe percentage of users for whom the calling pattern cdyrect
example number of populations or improvement of the besssigns as residential location one of the cellular towetkée
solution) is satisfied. Hereby, we will refer todividual as a user’s cellular towers list associated to its zip code. Om th
candidate solution being evaluated by the GA, andderas other handcoveragds defined as the percentage of users from
a subscriber with cell phone calls whose residential locati the dataset that are assigned a cell tower (correct or iecrr
we want to identify. as residential location.
In our context, the Genetic Algorithm takes as input the The fitness function is defined dstness = p* coverage +
set of cell phone calls (CDRs) made by the users in the accuracy where the values qgf andq are weights assigned
dataset, and their residential locations each expresseal a® each of the two measures depending on the significance we
list of cellular towers. Each individual (candidate sabmfi, want to give to the accuracy and the coverage of the algorithm
designed to capture thresidential calling patterpis evaluated The optimal values for these weights are computed by testing
by a fitness function that computes the number of users file performance of the Genetic Algorithm across different
whom the residential location is correctly assigned. Afteanges. We refer the reader to the experimental section V for
stability is reached, the optimal solution will contain tredues further details on the calibration of these weights.
that best characterize thesidential calling patternIn the GA Configuration & Architecture:In order to evaluate
next subsections, we describe in detail the chromosome ahd fitness function, we need to process all the calls made
its genes, the fithess function, the GA architecture and is received by each user. Given that CDR datasets contain
configuration. millions of cell phone calls that account for gigabytes ofeda
Description of the Chromosome and Gendde define a we have designed an architecture that allows for the evatuat
chromosome composed of three different genes (see Figureil)parallel of large populations of individuals.
The first two genes represent thiarting timeand thefinishing Specifically, we have chosen tishared-pool modehrchi-
time i.e.,the range that defines the time period under whidecture (see Figure 4), where each process (or island) eecu
users make cell phone calls from their residential locatioa local genetic algorithm and periodically exchanges aiatdi
Each time variable is composed of seven bits, which divideslutions with other islands through the shared pool [18].
the day in fractions ofi1.25 minutes each. Finally, the third In our architecture, each process is initialized with a
gene represents theays of the weekvhen users typically randomly generated population &f) individuals. At every
make cell phone calls from their residential location. Ebith generation, the reproduction is carried out foB@% of the
of this field represents one day of the week., 1000000 is total population; the crossover is executed withb&h of pairs
Sunday0100000 is Monday, and 000001 comprises Saturday of the selected population by randomly selecting a genech ea



meet an average of at least two calls per day in an attempt
to eliminate subscribers that use cell phones sporadiealtly
minimize systematic uncertainties due to calling behavior
based on very few calls. All subscribers have a cell phone
contract with the same carrier, and both their zip code resi-
Process dential location and age are known.

The shared-pool model architecture was setup with four
computers of eight cores each, which allows us to run up to
32 different processes (islands). Since each island imted
with 50 randomly generated individuals, the architecture can
explore1600 individuals per generatione., we can explore a
large number of parameter combinations in little time.
Process In order to determine eesidential calling patternwe first
apply the algorithm to match each zip code in the city to
a list of cell towers that offer coverage to the associated
geographical area (see Pseudocode ). This pre-processing
Process associates to each subscriber a list of cell towers thaesept
their residential locations. After that, we start the géanet
algorithm in each one of th82 islands with 50 randomly

generated individuals and make them evolve until a stabte st
Fig. 4. GA Distributed Architecture: Shared-Pool Model. (a solution) is reached
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Analysis of Results

individual and exchanging its content with its partner; #mel ~ In order to understand the evolution of the genetic algo-
mutation is executed for each gene with a probability 6f2 ~ rithm, we compute both the fitness and the Hamming distance
and by randomly creating a new gene. Next, the fitness vakeach generation. The fitness function helps us undergtand
for each individual is evaluated and the population is aederquality of the solutions being explored: the higher the galu
by decreasing fitness values. The fittest individual is agvajhe better the solution in terms of accuracy and coverage. Th
moved to the next generation, and all the other individuasamming distance is used to measure theersity of the
have a probability of being brought to the next generatidndividuals being explored at each generation [19]. As the G
proportional to their fitness value. gets closer to the optimal solution, the individuals exptbare
Each process is executed on one core and runs in paraghpected to be more similar among themselves and thus have
with the other processes in our architecture of four duaé-coHamming distances closer to zero.
Intel processorg. In order to increase heterogeneity in the As explained in Section 1V, the fitness function can give
population explored by each process, evefy generations different weights to the accuracy and the coverage of the
five individuals migrate to the shared poal The migrants individuals. To explore the impact that valugsand ¢ may
are selected using the roulette wheel selecer the better have in the fitness function, we evaluate the fitness values fo
the fitness of the individual is, the higher the probabilify othe following combinationgp = 0.4,¢ = 0.6), (p = 0.3,¢ =
migrating is. Upon migration, the process retrieves from tH).7), (p = 0.2,¢ = 0.8), (p = 0.1,¢ = 0.9). Figure 5(a)
shared pool another five individuals and replaces the pusvigshows the evolution of the fitness function values for each
population using an inverse roulette wheel, the worse the pair (p, q). Each pair is evaluated usirigcores (islands) that
fitness of the individual is, the higher the probability tliiat are booted withb0 randomly generated individuals. For each

will be substituted by a migrant from the shared pool. generation, the fitness value shown per gairg) is the best
across alB islands ¢00 individuals) explored. We can observe
V. EXPERIMENTAL RESULTS that the best fitness values are associated to the combinatio

In this section we introduce the dataset, we describe tfie = 0-4,¢ = 0.6) reaching fitness values of up to 75 after
setup of the shared-pool model architecture and discuss #fegenerations, and showing small incremental improvesnent
evaluation of the results obtained, both globally and by ag¥er time. Other combinations reach stability later (aft@rto

groups. 60 generations) with smaller fithess values.
Figure 5(b) shows the evolution of the Hamming distance
CDR Dataset and Setup over time. For each generation and combinatiprng), we

Our initial CDR dataset contains months of cell phone Plot the Hamming distance of the individuals from the island
calls collected fromlL00, 000 residential subscribers in a citythat reached the best fitness function. We observe that after

from an emerging economy. We exclude users that do rfiProximately 10 generations the Hamming distance deeseas
significantly showing that a firggoodsolution has been found.

2Dell Precision T7400 with 3.4GHz, 64-bits, and 32GB of meynor Every 20 generations, when the islands exchange individuals,
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is reached. ate the diversity of the explorations.
Fig. 5. Evolution of the Genetic Algorithm over time for difent weight combinations (p,q) in the fitness function.
621 Although the genetic algorithm reaches high coverage val-
60 ues, the accuracy does not seem to increase beyidiadThis
KRR means that there exists38% of subscribers for whom their
A residential location was wrongly predicted. In an attengpt t

dig into the causes of these wrong classifications, we sdudie
the list of cell towers that the candidate solutions (indii4ls)
assigned to the users as potential residential locatioesalR
that the algorithm selects as the residential location,ctle
*fgjg:;‘::jgﬁ; tower that has the highest number of cell phone calls among
-@=02q-08)] all the cell towers that comply with the requisites specified
- me=0la09) - the genes. We observed that for many of the users that were
L R T BN LR wrongly classified, there existed very little differencevbeen

the number of calls in the first and the second most used
Fig. 6. Accuracy and Coverage values for each combinatiomedghts (p,q) towers. Thus, we decided to add an extra condition in the
in the fitness function. The pairs (accuracy,coverage)esgmt the quality of assignment of the residential location. A user is assigned a
individuals evaluated over time. cell tower as residential location, if and only if the diféece
in percentage of total calls between the first and the secelhd ¢
towers represents a minimum percentagéf the difference

we observe a periodic increase in the Hamming distance de@iween these two towers is smaller than the percentage

to the diversity introduced by the migrants. However, aftéequired, the user is not assigned a residential location.

approximatel60 generations, the Hamming distance reaches aThis extra condition attempts teanthe behavioral signal

value of0, thus confirming that a stable state has been reacheglated to theresidential calling patternby not stating a

Small bumps in the distance are observed subsequentlg theesidence location unless the differences between the two

mainly relate to randomly generated individuals that ané-pemost predominant calling behaviors in a user are suffigientl

odically explored by each individual island. large. Although this condition lowers the coverage, we am t
To better understand the meaning behind the fitness furigcrease the accuracy of the residential location claaiio.

tion, Figure 6 depicts the accuracy versus the coveragesaliVe explored values forr from 0% to 30%, where 0%

for each combinatiotip, ¢). Each pair in the plots, representgepresents the case initially explored that yielded aaesa

the coverage and the accuracy of the solutions (indivigualf up to 61%.

explored by any of the islands associated to efcly) over Figure 7 shows, fofp = 0.4, ¢ = 0.6), the coverage and the

time until a stable state is reached (in terms of fitness galugccuracy reached by the genetic algorithm when we require

and Hamming distances). If two individuals share the sameminimum percentage of difference between the first and

coverage, the best accuracy value is plotted. As confirmedtire second cell towers in order to assign a residential ilmeat

Figure 5(a), we observe that the best combination of weights each user. As in Figure 6, each pair (accuracy, coverage)

is (p = 0.4, ¢ = 0.6), yielding accuracies of up t61% with represents the quality of the solutions evaluated by anh®f t

a coverage of nearl95%. Thus, we have found eesidential individuals explored across all islands until a stableesiat

calling patternthat reveals the residential location for almosteached (in terms of fitness values and Hamming distances).

all subscribers with an accuracy 6f%. Theresidential call- We observe that very good values are obtained wher25%

ing patternwas found for days Monday, Wednesday, Saturdayith accuracies of oveT2% and a coverage of up 0% or

and Sunday from5:45:00 to 11 : 03 : 45. whenr = 20% with accuracies of approximatel§0% and
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Fig. 7. Accuracy and Coverage values for various perceatagé difference Fig. 8. CDF showing the percentage of misclassified userssevteror

in the number of Fotal calls between the first and th_e secpn_dt_ rused distance between the real and the detected residentigldoda smaller than
cell towers. The pairs (accuracy,coverage) representubtityof individuals o tain value.

evaluated over time.

a coverage around0%. The residential calling patternfor
the latter was represented by the following candidate solut
days Monday, Tuesday, Friday, Saturday and Sunday ffom
15:00to 8 : 26 : 15.

Impact of the Misclassification in the Correlation Analysis

The final aim of the residential location algorithm is tc
assign a residential location to each user. These locatic
are then used to associate users to geographical regions
have been characterized by specific socio-economic factc
Potential correlations between these socio-economiampara 05 1020 erage 00806
ters and cell phone use might give us an insight into human
behavior and technology usage. It may be argued that wtele #ig. 9.  Accuracy and Coverage values per age range obtaigietheb
residential location of 0% of the users is correctly classified,ndividuals explored by the genetic algorithm across dérids until stable

. . . states are individually reached.
there might a noticeable effect on the correlation analfrees
the remaining30% users that have been misclassified.

In order to quantify such effects, for each misclassified use
we computed the distance between the cell tower incorrectlyFigure 9 shows, fofp = 0.4,¢ = 0.6) andr = 20%, the
identified as residential location by the algorithm and theoverage and accuracy for each age range. Each pair (cover-
centroid of the group of cell towers associated to her/h&ge, accuracy) specifies the quality of the solution reprtese
residential zip code. Figure 8 shows a CDF that represeats tty the individuals explored by each genetic algorithm until
percentage of users for whom the error distance between rgi@ble states are individually reached (in terms of fithedses
and predicted residential location was smaller than a icert&nd Hamming distances). In fact, by dividing users by age
distance measured iam. It can be observed that f@#2% ranges, we observe an improvement in the accuracy for nertai
of the misclassified users, the error distance is smaller thage groups. This result also implies that different age jgsou
10km. These erroneous residential classifications might béve distinctesidential calling pattern@nd as a result some
related to traffic being forwarded through other close-bly ceage groups might be more predictable than others. For the
towers or to users who failed to notify changes of residelmcy. ranges considered, the age range (18-24) showed the highest
any case, the impact of this small error in further corretati improvement, reaching accuracies of up8tw with a 40%
analyses will be minimal. coverage, with theesidential calling patterrbeing Monday,

Wednesday and Friday frori : 37 : 30 to 7 : 18 : 45.

Analysis by Age Ranges

In an attempt to improve our classification rates and I%OIUt'On Degradation

study the impact of age in the identification of residential Given that genetic algorithms are computationally expen-
location, we run a separate genetic algorithm (with its etlar sive, minimizing the cost of the fithess function evaluation

pool architecture) for each age range considered: (1823}, is particularly relevant. To this end, we want to understand
34),(35-44), (45-54), (55-69). to which extent the accuracy and coverage of the solutions



| DataSet Sizel] Accuracy | Coverage| Processing Time) an optimization problem that seeks to understand the tirfhes o

4 months 67.2 49.0 3.5% . .

T months 66.5% 48.8% 567 the day and days of the week at which the bulk of subscribers

2 months 65.46%6 | 48.3% 1.94 use their phones from their residential locations. Our Itesu

1 month 64.5%% | 46.56% 1.15 show that we can achieve accuracy rates of ar@1§élwith a

2 weeks 62.04% | 45.61% 0./% coverage up t65%. We have also explored a more constrained

1 week 59.00%6 | 44.5%% 0.4% ; K . ;

technique that aims to improve the accuracy by decreasig th
TABLE | coverage, obtaining an accuracy @% with a coverage of

ACCURACY, COVERAGE AND PROCESSINGTIME VALUES FOR CDR 50%. Age based analysis indicates that if the age information

DATASETS OF DIFFERENT SIZES is available, a higher accuracy can be obtained by producing

independent GAs for each age group. Finally, we have shown
that more thar80% of the users whose residential location

degrade depending on the size of the CDR dataset beWfgs misclassified show distance errors smaller thdnn.
processed. With smaller CDR datasets, the time it takes toAlthough different cities will reveal distinct calling gatns,
evaluate each subscriber's residential location and thal fifve believe that this paper represents a template solution fo
solution will be reduced, but the information available t§h€ automatic detection of the residential location based o
identify cell phone behavioral patterns will be more linite C€ll phone usage data. _ _

To quantify the degradation, we divided the initiamonth ~ Future work will focus on using the technique presented
CDR dataset into different sets of smaller size ranging flomt© compute the residential location of subscribers acrdfss d
months tol week each. For each one of these CDR subsef@rent cities in emerging economies. By characterizingheac
we ran the genetic algorithm with the shared-pool modaybscriber using the cell phone behavior and the residentia
and let it evolve until a stable solution (in terms of fitnes9cation, we will be able to understand whether there exist
values and Hamming distance) was reached. Table | shows, §8Frelations between socio-economic factors associateld-t
each dataset size, the accuracy, the coverage, and thegavei@fent geographical areas and cell phone usage at country or
time needed to process one candidate solution. The accurB@netary scales.
and coverage values are compute_d as the average of thgse REFERENCES
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