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Abstract Rule-driven processing is a proven way of
achieving high-speed in fuzzy processing. Up to now, rule-
driven architectures where designed to work with mini-
mum or product as T-norm. Nevertheless, a Lukasiewicz
T-norm is typically used with the compositional rule of
inference in expert systems applications that are based on
a fuzzy inference engine. This paper presents a rule-driven
processing architecture for systems with a Lukasiewicz
T-norm and partition of unity membership functions with
an overlap factor of two.
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1
Introduction
The need to process fuzzy knowledge base systems with
high speed resulted in the development of fuzzy hardware
architectures. Rule-driven processing is a technique used
to obtain high-speed fuzzy processors, because it allows
only relevant rules to be executed and this set of relevant
rules comprise only a small part of the complete fuzzy
knowledge base. Ikeda [6] developed one of the first rule-
driven architectures. Other authors, like [1–5], have de-
veloped fuzzy rule-driven processors but, all of them, were
designed for minimum or product as T-norm. The design
of a rule-driven architecture depends on the T-norm used
by the system, because it determines if a rule is relevant by
calculating the degree of truth of the antecedent.

Lukasiewicz T-norm is used with the compositional rule
of inference in the case that it is important that the system
verifies:

A \ NEGðAÞ ¼ 0 ð1Þ
A [ NEGðAÞ ¼ 1 ð2Þ
This is true for a Lukasiewicz T-norm with the negation
operator defined as:

NEGðAÞ ¼ 1 � A ð3Þ
These characteristics are typically used in knowledge-
based systems and expert systems applications. Since these

systems usually have a big number of rules, a rule-driven
system will improve its efficiency. Although some imple-
mentations have been done [8, 9], no rule-driven archi-
tecture for Lukasiewicz has been developed. In this paper,
a rule-driven architecture for high speed processing of
systems with a Lukasiewicz T-norm (4) is proposed.

Tn ¼ maxð0; ða þ b � 1ÞÞ ð4Þ

2
Justification of a rule-driven architecture
FS ¼ ðTn;Tc; P;A;D;R;MF;MFo; I;OÞ is a vector that
defines a MISO fuzzy system with Tn the T-norm, Tc the
T-conorm, P the propagation operator or implication
function [7], A the aggregation operator [7], D the defuz-
ification algorithm, R the set of rules, MF the membership
functions defined on the inputs, MFo the membership
functions defined on the output, I ¼ ðI1; . . . ; InÞ the input
and O ¼ ðO1Þ the output of the system. The system’s only
restriction is that the membership functions defined on the
inputs, MF, are normalized, with an overlap factor of two
and partition of unity (the sum of all of them for each input
equals one).

Given m ¼ CardðRÞ; n ¼ CardðIÞ, and G the overlap
factor of the input membership functions, Ra, the set of
active rules, verifies that:

Ra ¼ nG � m ð5Þ

3
Lukasiewicz rule-driven model
The proposed model is designed to obtain the set of active
rules for Lukasiewicz T-norm from an input. Figure 1
presents the graphic of a Lukasiewicz T-norm.

3.1
Mathematical definition of the model
The model, in order to obtain the set of active rules, is
based on some definitions. The classification of rules (CR)
is defined in a way, that, for a given input, it gives the
maximum set of possible active rules. From the classifica-
tion of rules, the concept of sensible area is introduced. A
sensible area is an association between an area of the input
space of the system and a set of rules. This association
allows to identify the set of active rules from an input.

3.1.1
Maximum set of active rules
To obtain the maximum set of active rules for an input, a
classification criteria for the rules is needed. This classi-
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fication criteria will associate each rule with a cell of the
input space of the systems. Each one of this cells will be
defined by a partition of the system. In order to obtain this
partition, the concept of activation interval is introduced.

For each Ii 2 I, the activation intervals of Ii;AIi, are
defined as the union of the set of intervals, left-closed and
right-open, except the last one which is also right-closed,
given by the extreme points of the kernel of each one of the
membership functions defined in Ii. Figure 2 presents an
example of activation intervals.

Formally, being p ¼ CardðMFiÞ, the activation intervals
of Ii can be obtained as:

AIi ¼ [KerneleðMFi;mÞÞ with m ¼ 1; . . . ; p ð6Þ
where Kernele is a function that obtains the extreme points
that define a kernel.

The set of activation intervals of the system are used to
define a partition of the system. Given AIi; i ¼ 1; . . . ;
CardðIÞ, and S the n-dimensional input space given by
ðI1; . . . ; InÞ, P is defined as a partition of S given by the
cartesian product (
) of AIi; i ¼ 1; . . . ; CardðIÞ:
P ¼ 
AIi; i ¼ 1; . . . ;CardðIÞ ð7Þ
Once a partition has been defined, the model defines a
criteria to classify the rules. Given ðAI1;p0 ; . . . ;AIn;k0 Þ the
cell Pj of P, and the rule Rm defined as:

Rm : If I1 is MF1;pand . . . and

In is MFn;k Then Consequence ð8Þ
It will be said that Rm is included in the cell Pj if and only if:

Rm 2Pj ,8ði; l;hÞ
¼ ð1;p;p0Þ; . . . ;ðn;k;k0Þ verifies MFi;l \AIi;h 6¼ ; ð9Þ

A rule Rm will be included in a cell Pj if and only if every
membership function MFi;l of the rule has a non empty
intersection with the correspondent dimension AIi;h that
defines the cell Pj.

The classification of rules (CR) is defined as the
classification of the set of rules R in P using (9). CR is
expressed as a vector containing the active rules for each
cell of P:

CR ¼ ðCR1; . . . ;CRkÞ with k ¼ CardðPÞ;
CRi ¼ ðRk0 ; . . . ;Rj0 Þ with i ¼ 1; . . . ; k

ð10Þ

Example Given FS ¼ ðTn;Tc; P;A;D;R;MF, MFo; I;OÞ a
fuzzy system with n ¼ 2, R ¼ ðR1;R2;R3;R4Þ:
R1: If I1 is A1;1 and I2 is A2;1 Then Z is Z1 ð11Þ
R2: If I1 is A1;1 and I2 is A2;2 Then Z is Z2 ð12Þ
R3: If I1 is A1;2 and I2 is A2;1 Then Z is Z3 ð13Þ
R4: If I1 is A1;2 and I2 is A2;2 Then Z is Z4 ð14Þ
The membership functions are ðA1;1;A1;2Þ and ðA2;1;A2;2Þ,
defined in I1 and I2 respectively. The activation intervals
will be (see Fig. 3):

AI1 ¼ ð½0;AÞ; ½A;BÞ; ½B;C�Þ ð15Þ
AI2 ¼ ð½0;A0Þ; ½A0;B0Þ; ½B0;C0�Þ ð16Þ
The partition P of S will be (see Fig. 3):

P ¼ ðP1;P2; . . . ;P9Þ
¼ ðð½0;AÞ; ½0;A0ÞÞ; ð½0;AÞ; ½A0;B0ÞÞ; ð½0;AÞ; ½B0;C0�Þ; . . .Þ

ð17Þ
The classification of rules (CR) will be (see Fig. 3):

CR ¼ ððR1Þ; ðR1;R2Þ; ðR2Þ; ðR1;R3Þ;
ðR1;R2;R3;R4Þ; ðR2;R4Þ; . . .Þ ð18Þ

The classification of rules (CR) shows for a Lukasiewicz
T-norm the maximum number of active rules that can be
executed for an input I included in a cell Pk.

3.1.2
Sensible areas
The Lukasiewicz rule-driven model is based on sensible
areas. A sensible area k, SAk, is defined by the region of the
cell Pk and the set of associated rules CRk, the maximum
set of active rules.

SAk ¼ fPk;CRkg ð19Þ
The general appearance of the sensible areas of a two-input
system with trapezoidal membership function is given in
Fig. 4. This partition is the same for any type of partition
of unity membership functions with an overlap factor of
two. There are four different types of sensible areas:

� sensible areas marked with 1 are defined by the kernel
of two membership functions, and have only one rule
associated.

Fig. 1. Graph or the Lukasiewicz T-norm

Fig. 2. Activation intervals (AI)
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� sensible areas marked with 2 and 3 are defined by one
kernel and by one transition between 0 and 1 of the
membership functions, and have two rules associated.

� sensible areas marked with 4 are defined by two
transitions between 0 and 1 of the membership
functions, and have four rules associated.

Because Tnða; 1Þ ¼ a, if the input is included in a sensible
area of type 1, 2 or 3 the rules associated will be the set of
active rules. In case the input is included in a sensible area
of type 4 the set of active rules will be a subset of the
associated rules because none of the membership func-
tions equals one. In a system with a Lukasiewicz T-norm,
if none of the membership functions is one, there is no
guarantee that the rule will be active. In case the input is in
a sensible area of type 4, the set of active rules will have to
be determined.

In order to determine efficiently the set of active rules, a
mechanism to obtain this set from the input of the system
is needed.

3.2
Architecture of the model
The architecture proposed is divided in two parts, the
off-line processing, which adapts the representation of the
system to achieve high speed, and the on-line architecture,
which implements the results of the off-line processing to
run the system.

3.2.1 Off-line processing
The objective is to compile the system to identify the set of
associated rules with high speed. The off-line processing is
divided in two steps:

� Equalization of the membership functions and of the
sensible areas.

� Identification of the set of active rules.

3.2.1.1
Equalization of the membership functions
and the sensible areas
The equalization of the membership functions of the
system allows to obtain in an efficient way the sensible
area in which an input I is included, and to identify the
set of active rules. The equalization is done with the
function N.

For each dimension i ¼ 1; . . . ; n the equalization
function NiðIiÞ, is defined as:

NiðIiÞ ¼ MFi;1ðIiÞ � 0 þ MFi;2ðIiÞ � 1 þ � � �
þ MFi;kðIiÞ � ðk � 1Þ; with k ¼ CardðMFiÞ

ð20Þ
Fig. 3. AI1, AI2, P and CR

Fig. 4. Sensible areas of the input
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The membership functions obtained from applying the
equalization function Ni are triangles with an overlap
factor of two and partition of unity. The domain of each
equalized dimension is ½0; . . . ;Card(MFiÞ � 1�, with
Card(MFi) the number of membership functions defined
in Ii. The set of equalization functions has been designed
to eliminate the constant parts of the membership func-
tions of the original system, and to be sensible to the
variations. Figure 5 presents an example of the equaliza-
tion done by NiðIiÞ.

Due to the equalization of the membership functions,
the sensible areas are also equalized. Figure 6 presents
the equalization of the sensible areas and membership
functions given in Fig. 4. Basically, all the constant parts
of the membership functions disappear, so only the
sensible areas of type 4 remain in the equalized input
space.

3.2.1.2
Identification of the set of active rules
Working in the equalized space makes the identification of
the sensible areas easier. Defining I0 ¼ ðI01; I02Þ as the
equalized input of I ¼ ðI1; I2Þ:
� If I01 and I02 are integers, I is included in a sensible area of

type 1, and the rule associated will be identified by
ðI01; I02Þ. The value of the T-norm will be 1.

� If I01 is integer and I02 is non-integer, I is included in a
sensible area of type 2. The set of two rules associated
will be identified by ðI01; integerðI02ÞÞ. The T-norm will be
fraction ðI02Þ for one rule and 1-fraction ðI02Þ for the
other.

� If I01 is non-integer and I02 is integer, I is included in a
sensible area of type 3. The set of two rules associated
will be identified by (integerðI01Þ; I02Þ. The T-norm will be
fraction ðI01Þ for one rule and 1- fraction ðI01Þ for the
other.

� If both I01 and I02 are non-integers, I is included in a
sensible area of type 4. This case is identified by
(integerðI01Þ, integerðI02Þ). In that case the Lukasiewicz
T-norm has to be calculated.

In case the input is included in a sensible area of type 4,
the set of active rules has to be obtained. This set will be a
subset of the associated rules of the sensible area.

Each one of the sensible areas of type 4 can be divided
in four triangles (Fig. 7). This division, given by the
definition of the Lukasiewicz T-norm (1), allows to obtain
the set of active rules for a given input. Each one of those
triangles will have two active rules associated.

In the equalized input space, the set of triangles of the
sensible areas of type 4 will be seen as diamonds (Fig. 7).
It has to be determined in which of this diamonds is the
input, to obtain the two active rules associated. For that,
each one of those sensible areas will have 4 points
ðC1;C2;C3;C4Þ associated (Fig. 7) which will represent the
center of the four diamonds involved. In order to deter-
mine in which of the diamonds is the input, (21) has to be
verified, where ðI01; I02Þ is the equalized input, and ðCi;1;Ci;2Þ
the center of the diamond. (21) is a q1 metric [7] defined as
a sphere or ball, q1ððx; yÞ; ð1; 1ÞÞ � 1.

jI01 � Ci;1j þ jI02 � Ci;2j � 1 ð21Þ

3.2.2
On-line architecture
The architecture of the on-line system can be seen in Fig. 8.
The rule-driven system will identify and pass the set of

Fig. 5. Example of equaliza-
tion done by NiðIiÞ

Fig. 6. Equalized input space

68



active rules to the inference system. The inference system
will execute only this set of rules and not the whole rule base.

The rule-driven system proposed, Fig. 9, is independent
from the architecture of the inference system, and is based
on the off-line processing defined in the previous point.

The rule-driven system is divided in three blocks, the
equalization of the inputs block, the detection of the set of
active rules block, and the rule base.

In the equalization of the inputs block, from a given
input I ¼ ðI1; . . . ; InÞ, the equalized input I0 ¼ ðI01; . . . ; I0nÞ
is obtained applying the set of Equalization Functions
NiðIiÞ, where I0i ¼ NiðIiÞ with i ¼ 1; . . . ; n. The set of
functions NiðIiÞ typically will be stored in a memory to
obtain high efficiency.

In the detection of the set of active rules block, from I0,
a set of pointers to the active rules is obtained. Given X the
number of membership functions of I1, Y then number of
membership functions of I2, and ND the number of

diamonds for each sensible area of type 4, the algorithm
that implements the detection of the set of active rules is
presented in Fig. 10.

Although the model has been presented for a two-di-
mensional system, it is easily extended to n-dimensional
systems. In that case the model will produce n equalization
functions NiðIiÞ and 2n different types of sensible areas.

4
Rule-driven architecture vs. non rule-driven architecture
The comparison of both solutions is done in terms of
memory needed and execution time.

4.1
Memory comparison
A non rule-driven solution will need the rule memory.
A rule-driven solution, apart from the rule memory, will
need the information on the sensible areas and the
equalization functions. The amount of bytes needed to
store the information of the sensible areas, M1, is given by
(22), with X the number of membership functions of I1,
Y of I2, ND the number of diamonds involved (four in a
two-dimension system), B the number of bytes per pointer
and C the number of bytes per real.

M ¼ ðXY þ 2XðY � 1Þ þ 2ðX � 1ÞY
þ 2ðX � 1ÞðY � 1ÞNDÞB þ 2XY � ND � C ð22Þ

The amount of memory M2 needed to store the equal-
ization functions NiðIiÞ, given n the dimension of the
system and p the number of bits of the digital
conversion, is:

M2 ¼ n2pðp=8Þ ð23Þ
The total amount of extra memory Mt needed by the rule-
driven system for a Lukasiewicz T-norm is:

Mt ¼ M1 þ M2 ð24Þ

4.2
Execution-time comparative
The execution time of a non rule-driven two-input system
with 4 membership functions per input (as in Fig. 11) is
16K, being K the execution time of a rule.

In the case of the rule-driven architecture proposed,
given an equal probability of the input of the system to
have any value of the input space, and a typical set of
membership functions, as given in Fig. 11, the probability
of the input I to be included in each type of sensible area,
P1 for the sensible areas of type 1 (25), P2 for type 2 (26),
P3 for type 3 (27) and P4 for type 4 (28), is:

Fig. 7. Identification of the active rules in sensible areas of type 4

Fig. 8. Architecture of the fuzzy system

Fig. 9. Architecture of the
rule-driven system
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P1 ¼
4a2 þ 4b2 þ 8ab

ð2a þ 2b þ 3cÞ2 ð25Þ

P2 ¼
6bc þ 6ac

ð2a þ 2b þ 3cÞ2 ð26Þ

P3 ¼ P2 ð27Þ

P4 ¼
9c2

ð2a þ 2b þ 3cÞ2 ð28Þ

With this probabilities, the execution time is given in (29),
where R is the execution time needed to obtain in which
diamond is I0.

T ¼ ðP1 þ 2P2 þ 2P3ÞK þ P4ð2K þ RÞ ð29Þ
R can be calculated, given an equal probability for
the diamonds of the equalized input space, as given in
(30), where D is the execution time of the expression
(21).

R ¼ 0:25D þ 0:5D þ 0:75D þ 0:75D ¼ 2:25D ð30Þ

The time percentage saved, TS, for a two input system with
four membership functions per input is given by (31).

TS ¼ 100 � 6:25ðP1 þ 2P2 þ 2P3 þ 2P4Þ � 14:0625
D

K
P4

ð31Þ
For example, a system with a ¼ 2; b ¼ 1:5; c ¼ 1, the
amount of time saved by the rule-driven system will be
90%. With these benefits, the increase of memory needed
by a rule-driven model, typically 5k in a two-dimensional
system, is plenty justified.

Fig. 10. Algorithm for detec-
tion of active rules

Fig. 11. Typical structure of a set of membership function
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5
Conclusions
This paper presents a rule-driven architecture for Lu-
kasiewicz systems working with partition of unity mem-
bership functions with an overlap factor of two, which
goes 90% faster than a non rule-driven architecture. The
architecture can be implemented both in hardware and in
software. This result is a first step towards the design of a
high speed Lukasiewicz fuzzy processor.

The best part of ideas exposed in this paper can be also
applied to the design of a rule-driven architecture for a
generic T-norm, and for a n-dimensional system.
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