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ABSTRACT
Commuting matrices are key for a variety of fields, includingtrans-
portation engineering and urban planning. Up to now, these matri-
ces have been typically generated from data obtained from surveys.
Nevertheless, such approaches typically involve high costs which
limits the frequency of the studies. Cell phones can be considered
one of the main sensors of human behavior due to its ubiquity,and
as a such, a pervasive source of mobility information at a large
scale. In this paper we propose a new technique for the estima-
tion of commuting matrices using the data collected from theper-
vasive infrastructure of a cell phone network. Our goal is toshow
that we can construct cell-phone generated matrices that capture the
same patterns as traditional commuting matrices. In order to do so
we use optimization techniques in combination with a variation of
Temporal Association Rules. Our validation results show that it is
possible to construct commuting matrices from call detail records
with a high degree of accuracy, and as a result our technique is a
cost-effective solution to complement traditional approaches.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms,Experimentation,Measurement.

Keywords
Commuting Patterns, O-D Matrix, Call Detail Records, Temporal
Association Rules.

1. INTRODUCTION
Commuting patterns are typically represented using commuting

matrices, which are a particular case of O-D matrices. O-D ma-
trices characterize the transitions of a population between different
geographical regions representing the origin (O) and destination
(D) of a route. When building commuting matrices the geographi-
cal areas representing origin(O) and destination (D) capture where
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people live and work. Typically O and D are the same set and rep-
resent the towns or neighborhoods of the geographical area under
study. Each element of the commuting matrix(i, j) defines the
percentage of individuals that live inOi and work inDj . O-D ma-
trices are traditionally used in transportation and urban planning
engineering, and have been approximated using a wide range of
different techniques [11][3].

Typically, National Statistical Institutes carry out periodical sur-
veys asking different segments of the population about their com-
muting patterns [18]. The information obtained is used as input
for O-D generation techniques. However, such approach typically
involves high costs and the data collected has spatio-temporal lim-
itations, which implies that the matrices generated typically only
represents a snapshot of the commuting patterns over time.

In recent years, cell phones have become a pervasive technol-
ogy with users carrying them at almost all times. The ubiquity of
these platforms has transformed cell phones into one of the main
sensors of human behavior. In fact, every time a subscriber makes
or receives a phone call, or an SMS, or an MMS, information re-
garding the interaction as well as the geolocation of the user (in
the form of the tower used for the communication) is logged for
billing purposes. As a result we can find in the literature a variety
of studies focussing on using cell phone data for estimatingtraffic
and commuting patterns [9][20] . Following this trend, in this pa-
per we explore the use of the location information containedin Call
Detail Records as a means to compute the commuting patterns of a
population expressed as an O-D matrix. Such approach overcomes
the limitations posed by the use of other proxies (like smartcards,
surveys or social security records) and it can be carried outas often
as necessary with very limited costs.

Compared to the literature, our approach has the following con-
tributions: (1) We base our study in Call Detail Records, which are
already available for billing purposes in a telco operator,and not in
specific measurements and/or traces obtained from the cell phone
network. As a result our approach is based on a big part of a pop-
ulation and not on a limited number of traced cell phones; (2)We
present a new technique for defining and constructing O-D matrices
based on a new temporal variation of association rules (TAR,Tem-
poral Association Rules); (3) Our technique does not require any
number of minimum interactions (phone calls) per user because it
is not based on individual users but on aggregated patterns;(4) Our
technique is designed to capture the different cultural commuting
schedules of different urban areas; and (5) we present our studies
for both the home-work and work-home commuting patterns.

2. CELLULAR INFRASTRUCTURE
In order to compute the commuting patterns of a population from

geolocated cell phone logs, we first give a brief overview about how



these pervasive networks work. Cell phone networks are built using
a set of base transceiver stations (BTS) that are in charge ofcom-
municating cell phone devices with the network. Each BTS tower
has a geographical location typically expressed by its latitude and
longitude. The area covered by a BTS tower is called a cell. Each
cell is typically divided in three sectors, each one covering 120 de-
grees. At any given moment, one or more BTSs can give coverage
to a cell phone. Whenever an individual makes a phone call, the
call is routed through a BTS in the area of coverage. The BTS is
assigned depending on the network traffic and on the geographic
position of the individual.

CDR (Call Detail Record) databases are generated when a mo-
bile phone connected to the network makes or receives a phonecall
or uses a service (e.g., SMS, MMS, etc.). In the process, and for
invoice purposes, the information regarding the time and the BTS
tower where the user was located when the call was initiated is
logged, which gives an indication of the geographical position of
a user at a given moment in time. Note that no information about
the exact position of a user in a cell is known. Also, no information
about the location of cell phone is known or stored if no interaction
is taking place.

From all the data contained in a CDR, our study uses the en-
crypted originating number, the encrypted destination number, the
time and date of the call, the duration of the call, and the lati-
tude and longitude of the BTS tower used by the originating cell
phone number and the destination phone number when the inter-
action happened. In order to preserve privacy, all the information
presented is aggregated and original records are encrypted. No con-
tract or demographic data was considered or available for this study.

3. PROBLEM DEFINITION
A commuting matrixCM [O, D] represents the percentage of

population that commutes on an average daily basis from an origin
geographical areaO to a destination geographical areaD. Typ-
ically O andD represent the same set of towns, and as a result
a commuting matrix is usually a square matrix. Two commut-
ing matrices can be defined: the home-work commuting matrix
CM [H, W ] and the work-home commuting matrixCM [W, H ].
In the first case, each row of the commuting home-work matrix
CM [H, W ], Hi represents the percentage of population that lives
in geographical areaHi and commutes to each geographical area
Wj . The diagonal of the matrix expresses the percentage of the
population that lives and works in the same town. Symmetrically,
the work-home commuting matrixCM [W, H ] accounts for the
population that works in the geographical areaWi and commutes
back home to each one of the geographical locationsHj (columns).
From this explanation, beingN the number of geographical areas
considered, it follows that

Pj=N

j=1
CM [Hi, Wj ] = 1∀i ∈ [1, ..., N ]

and
Pj=N

j=1
CM [Wi, Hj ] = 1∀i ∈ [1, ..., N ].

Traditionally, such commuting matrices are computed by Na-
tional Statistical Institutes (NSIs) that run surveys and question-
naires across the population under study and determine the com-
mutes that citizens carry out on a daily basis. These mobility ma-
trices are typically available at census bureaus. However,as stated
earlier, such surveys are expensive and thus carried out every cer-
tain number of years.

The goal of this paper is to present a mechanism to estimate the
commuting matrix of a geographical area from the information con-
tained in CDR records that can approximate the values provided by
traditional questionnaire-based approaches. For that purpose, two
mechanisms need to be defined: (1) the construction of commut-
ing matrices from CDR data and (2) an optimization process that

identifies which behavioral patterns better define commuting when
using CDR data.

4. ESTIMATING COMMUTING MATRICES
FROM CDR

In this section we will present the mechanisms needed to char-
acterize the commuting patterns of a population from call detail
records (CDR).

4.1 From CDRs to Commuting Matrix
To compute a commuting matrix from CDRs we first need to

identify the geographical areas in the region under study that we
are going to use as eitherhome or work. Given that the goal of
this paper is to present an alternative method to generate commut-
ing matrices, for each particular case we will select as regions the
same ones considered by corresponding NSI. We assign to eachre-
gion the set of BTSs geographically included in them (i.e. the tow-
ers that give coverage to that area). As a result each geographical
area consideredgi, i = 1, ..., N , with N the total number of geo-
graphical areas considered, can be characterized by a set ofBTSs
gi = {bts1, bts2, ..., btsk}.

Once these areas have been characterized, we need to compute
–from the CDRs– the individuals that called from an origin area at
some point in time and later show calling activity at a destination
area. These associations will populate the home-work and work-
home commuting matrices.

We can formalize this problem using Association Rules [1]. As-
sociation Rules (ARs) were introduced by Agrawalet al. as a tech-
nique to discover specific item relationships in itemsets [1]. Specif-
ically, given an itemsetX = X1, X2, ..., Xn, an Association Rule
of the typeX → Y implies that wheneverX is satisfied,Y is also
satisfied, with a given support and confidence. Formally, being P
the probability of an itemset:

support(X → Y ) = P (X
[

Y ) (1)

confidence(X → Y ) = P (Y |X) =
P (X

S

Y )

P (X)
(2)

Often times, Association Rules(AR) are used to find the tuples
that satisfy minimum support and confidence values in a dataset.
ARs are calculated using theApriori algorithm presented in [1]. In
our context, we seek association rulesHi → Wj andWi → Hj

that identify tuples characterizing the home to work and work to
home commutes. Furthermore, we require these events to happen
in a temporal orderi.e., the home-work matrixCM [H, W ] is pop-
ulated with pairs of eventsHi → Wj such that the interaction at a
home locationHi always happens earlier in time than an interac-
tion event at work locationWj ; analogously, the work-home matrix
CM [W, H ] is populated with pairsWi → Hj where an interaction
event at work locationWi always happens before an interaction at
a home locationHj . Because traditional Association Rules do not
consider any temporal order, we present a technique designed to
capture these elements:Temporal Association Rules (TARs).

4.1.1 Temporal Association Rules
Temporal Association Rules extend association rules by intro-

ducing temporal constraints in the relationship between antecedent
and consequent [14][7]. For our context, we propose a new Tem-
poral Association Rule (TARs) where itemsX andY are required
to happen within a specific time interval. Specifically, eachassoci-
ation ruleX → Y is characterized not only by its support and con-
fidence, but also by time intervals at which itemsX andY need to



Figure 1: CMTAR algorithm for the construction of an O-D matrix using Temporal Association Rules (TAR).

happeni.e., X[TO ] → Y [TD], whereTO is the time interval when
the antecedent (or originO) has to happen andTD the time inter-
val when consequent (or destinationD) has to happen. Also while
in traditional Association Rules, antecedents and consequents can
have more than one element, in our approachX andY contain just
one element, i.e. one geographical area, indicating the Origin(O)
and the Destination(D).

In order to reveal commuting patterns from CDRs, we seek to
identify the temporal association rules whose confidence represents
the percentage of individuals that are at an origin locationOi during
a time intervalTO = [tO,start, tO,end] and move to a destination
locationDj where they are present during a time intervalTD =
[tD,start, tD,end], formally:

Oi[tO,start, tO,end] → Dj [tD,start, tD,end] (3)

Note thattO,end happens beforetD,start. In our framework,Oi

andDj represent geographical regions and the temporal associa-
tion rules will either reveal commuting patterns from home to work
locations (withO=home location andD=work location) or work to
home commutes (withO=work andD=home).

In order to construct a commuting matrix CM, we propose CM-
TAR, a TAR-based algorithm (see CMTAR Algorithm in Figure 1)
that receives as input a set of CDRs and a pair of time intervalsTO

andTD . The algorithm produces as output a Commuting Matrix
obtained from CDR records (CMCDR) for the corresponding time
intervals. CMTAR identifies for each subscriberS within the CDR
dataset, all the pairsOi → Dj such thatOi happens within the
interval [tO,start, tO,end] andDj happens no later than 24 hours
within the interval[tD,start, tD,end]. Each element of the commut-
ing matrixCMCDR[O, D] is populated with the confidence values
associated to each Temporal Association Rule (TAR)Oi → Dj ,
with i, j = 1, ..., N (see Equation (2)).

From an implementation perspective, we have implemented CM-
TAR using a modifiedApriori algorithm designed to capture the
temporal characteristics of TAR. The algorithm assumes that the
set of CDRs are grouped for each subscriberS by date and time,
being|CDR| the number of CDR entries.

4.2 Optimizing Time Intervals
The previous section presents an algorithm, CMTAR, that con-

structs a Commuting MatrixCMCDR using CDR and a set of time

intervals that define the Temporal Association Rules. The prob-
lem is how to identify which temporal ranges best capture thebe-
havioral fingerprint for the home-work commuting matrix andthe
work-home commuting matrix. The objective is to identify the time
intervals for the origin and destination of the Temporal Associa-
tion Rules (TO andTD) that produce a Commuting Matrix from
CDR (CMCDR) as similar as possible to the original Commuting
Matrix provided by the corresponding National Statistics Institute
(CMNSI ).

A first approach could use brute force to test all possible time in-
tervals, and compute the similarity betweenCMCDR andCMNSI ,
being the best solution the one with the highest similarity value.
However, due to the large amount of CDR data such approach is
not computationally feasible. We propose to use optimization tech-
niques to identify the optimal time intervals that best characterize
the commuting patterns. In the following sections, we will present
the use of Genetic Algorithms (GA) and Simulated Annealing(SA)
to implement the optimization process. Both techniques have been
shown to be useful in similar problems [10], and although they are
both stochastic, they explore the candidate populations using sig-
nificantly different approaches.

In our context, for each pair of time intervalsTO andTD that the
optimization technique evaluates, we first need to computeCMCDR

using the CMTAR algorithm. In order to evaluate its accuracy, we
measure the similarity betweenCMNSI and CMCDR. As ex-
plained, each row inCMCDR represents the set of confidence val-
ues for the corresponding TARs for all commutes departing from
each geographical areaOi to any destination location (Oi → D∗).
Similarly, each row inCMNSI represents the confidence of the as-
sociated TAR from each geographical areaOi to geographical areas
D∗. Thus, in order to evaluate the accuracy ofCMCDR we need
to evaluate the similarity of each row with the corresponding row
of CMNSI . For that purpose, we use Pearson’s correlation[16] to
analyze the similarity between each origin locationOi in CMCDR

with CMNSI and the final similarity value is given by the aver-
age Pearson correlation across all origins. Formally the similarity
betweenCMNSI andCMCDR is obtained as:

c(Oi) = Pearson(CMCDR[Oi, D∗], CMNSI [Oi, D∗] (4)

similarity =
N

X

i=1

|c(Oi)|/N (5)



4.2.1 Optimizing Time Intervals with GA
Genetic Algorithms (GA) are search algorithms based on the me-

chanics of natural selection tailored for vast and complex search
spaces [2]. A GA starts with a population of abstract represen-
tations (called chromosomes) of candidate solutions (individuals)
that evolves towards an improved sets of solutions. Achromosome
is composed of several genes that code the value of a specific vari-
able of the solution. Each gene is typically represented as astring
of 0s and 1s. During the evolution, individuals from one generation
are used to form a new generation, which is (hopefully) closer to
the optimal solution. GAs use a fitness function in order to evalu-
ate the quality of the solution represented by a specific individual.
In each generation, GA creates a new set of individuals obtained
from recombining the fittest solutions of the previous generation
(crossover), occasionally adding random new data (mutation) to
prevent the population from stagnating. This generationalevolu-
tion is repeated until some condition (for example number ofpop-
ulations or improvement of the best solution) is satisfied.

In the context of identifying the best time intervals for construct-
ing CMCDR, GA takes as input the set of phone calls (CDRs) from
a geographical region andCMNSI , that defines the optimization
objective. Each candidate solution produced by GA is designed
to capture the time intervals at which commuters call from origin
and destination locations. In order to do that, we define a chro-
mosome composed of four different genes. The first two genes
represent the starting time and the finishing time at which sub-
scribers make phone calls from the origin locationsO. The last
two genes represent the starting time and the finishing time at which
subscribers make phone calls from destination locationsD. Each
gene is composed of five bits, which accounts for the24 hours
of the day. Given that we require that[tO,start, tO,end] happens
before[tD,start, tD,end], whenever the newly computed chromo-
somes does not satisfy this restriction, we assume thatTO happens
the natural day beforeTD.

The fitness of each candidate solution is evaluated using Equa-
tion (5), i.e. we define the fitness function as the accuracy ofthe
mobility matrixCMCDR with respect to the NSI mobility matrix,
CMNSI . As a first step to evaluate the fitness of a candidate solu-
tion, CMCDR has to be generated using CMTAR algorithm with
the time slots defined by the genes of the candidate solution.

For example, if a candidate solution proposed by the GA has the
values [(06,09),(17,22)], CMTAR computes the temporal associa-
tion rulesOi → Dj that represent calls made or received at loca-
tion Oi during a morning interval (6am to 9am) and at locationDj

during a night period (5pm to 10pm). The confidence values are
then used to generateCMCDR, whose fitness is evaluated using
CMNSI with Equation (5).

4.2.2 Optimizing Time Intervals with SA
Simulated Annealing (SA) is a probabilistic method designed to

find the global minimum of a cost function that may posses sev-
eral local minima[12]. It works by emulating the physical process
whereby a solid is slowly cooled so that its structure is frozen at a
minimum energy configuration [4].

The SA metaheuristic starts from a random initial configuration
and seeks to find solutions that minimize an energy functionE(x)
as the temperatureT decreases. At each step, the solution explored
is accepted as long as the Acceptance Probability Function (APF)
that depends both on the energy and on a varying temperature has
a higher value than a randomly selected number:

P (E(s), E(new), T ) > random(0, 1) (6)

Figure 2: Geographical division of the municipalities in which
the region of Madrid is divided (including the names of some of
them). The association between BTS towers and geographical
areas is defined by this borders.

The APF is selected such that the smaller the value ofT the
less "uphill" solutions are allowed to be explored, and asT de-
creases, the more the "downhill" solutions are favored. Such an
approach guarantees that the process does not get stuck in local
minima reaching a good approximation to a global minimum. This
process is repeated multiple times at each temperature value to al-
low the system to stabilize before decreasingT again.

In our context, SA takes as input CDRs andCMNSI , and out-
putsCMCDR and the intervalsTO = [tO,start, tO,end] andTD =
[tD,start, tD,end] that best characterize commuting patterns. For
that purpose, SA explores randomly selected time intervalsseeking
the ones that decrease the candidate’s energyE(x) until a global
minimum is found. Each candidate solution explored by SA is de-
fined as a set of two intervals, one representing the time interval
at origin [tO,start, tO,end] and another representing time interval
at destination[tD,start, tD,end]. Each time in the intervals is rep-
resented as a number in[0, 24], checking thatTO happens before
TD. If this condition is not satisfied, the process assumes thatTO

happens the natural day beforeTD.
Whenever SA explores a new candidate solution, it randomly

selects for each timet of each slot a new value from its neighbor-
hood. Given that SA seeks to minimize the energy function, we
define it as one minus the correlation coefficient betweenCMCDR

andCMNSI obtained by Equation (5). Finally, the temperatureT
is decreased following a geometric decrement such thatTnew =
α ∗ Told.

5. EXPERIMENTAL EVALUATION
In this section we present an evaluation of the mechanism we

have proposed to generate the commuting matrix for the region of
Madrid using CDR data. The state has a population of 6.5M and a
size of 8,000Km2, with the city of Madrid concentrating 3.3M in
population, and the rest corresponding to the 48 municipalities in
which the region is divided. Figure 2 presents the map of the region
and the division in municipalities.



5.1 Datasets
We have used two sources of information from the year2009:

(1) the NSI mobility matrices for the state of Madrid and (2) aCDR
dataset of cell phone calls made and received in the state.

NSI matrices represent the home-to-work (CMNSI [H, W ]) and
work-to-home (CMNSI [W, H ]) commuting patterns during2009
for the 48 municipalities shown in Figure 2. These municipali-
ties are considered as the OriginO and DestinationD sets. Such
matrices were built by the local NSI after gathering information re-
garding the municipality where a person lived and the municipality
where a person worked.

The second source of information is a CDR dataset that contains
all phone calls, SMS and MMS, that were collected from BTS tow-
ers located in the state of Madrid during October and November of
2009, which account roughly for 3.5M unique phones and around
300M interactions. This dataset also includes the geolocation of
the BTS towers. In order to filter out mobility patters not related
to commuting, we only consider CDR data from Monday through
Thursday. Similarly, all bank holidays were filtered. From the two
months of traffic available for this study, we will use the data from
October for the optimization process, and the data from November
will be used to validate the results.

In order to guarantee privacy we implemented a set of elements:
(1) All records were anonymized; (2) Data collection and anonymiza-
tion was done by a third party that was not involved in the analysis;
(3) No individual demographic data was available or requested for
this study and (4) The information presented is always aggregated
in order to further guarantee privacy.

5.2 GA and SA: Configuration
Genetic Algorithms and Simulated Annealing are used to search

for the temporal intervals that best represent the times at which
people commute using CDRs for the Madrid region. We carry out
a total of four experiments: (1) the construction ofCMCDR[H,W ]
using Genetic Algorithms and (2) using Simulated Annealing; and
(3) the construction ofCMCDR[W, H ] using Genetic Algorithms
and (4) using Simulated Annealing. The optimization process is
the same in all cases, but while the first two useCMNSI [H, W ] as
the goal of the optimization, the second two useCMNSI [W,H ].

For the experimental evaluation, we have used the JGAP imple-
mentation of Genetic Algorithms [15] and our own implementation
of Simulated Annealing following the description presented in [4].
Both approaches use the CMTAR Algorithm to constructCMCDR

for each set of time slots considered, which we have implemented
in Java.

In our experiments, GA uses a distributed architecture where a
set of16 genetic algorithms are run in parallel to explore the quality
of different time intervals. Specifically, each process is initialized
with a randomly generated population of a set of individuals. At
every generation, the reproduction is carried out for a90% of the
total population; the crossover is executed with a35% of pairs of
the selected population by randomly selecting a gene in eachindi-
vidual and exchanging its content with its partner; and the mutation
is executed for each gene with a probability of 1/12 and by ran-
domly creating a new gene. The fittest individual is always moved
to the next generation, and all the other individuals have a proba-
bility of being brought to the next generation proportionalto their
fitness value. Each process is executed on one core and runs in
parallel with the other processes in our architecture of dual-core
Intel processors. For our experiments we considered three different
population sizes10, 20, 50.

On the other hand, the SA implementation starts with an initial
temperature ofT0 = 5 and decreases its value with the function

Size Temporal Range Correlation
10 [20, 21][9, 16] 0.8050
20 [20, 21][9, 10] 0.8219
50 [20, 21][9, 10] 0.8219

Table 1: Optimization results when using Genetic Algorithms
for the home-to-work [H,W] commuting matrix.

Size Temporal Range Correlation
10 [14, 16][20, 24] 0.9029
20 [15, 16][20, 24] 0.9029
50 [15, 16][20, 23] 0.9059

Table 2: Optimization results when using Genetic Algorithms
for the work-to-home [W,H] commuting matrix.

Tnew = 0.65 ∗Told until a threshold value ofTn = 0.1 is reached.
This cooling criteria allows us to explore a sufficiently large amount
of temporal intervals without making the process too long. At each
temperature, the SA evaluates three different time intervals and
keeps the one that yields the best commuting matrix when com-
pared toCMNSI . Finally, we define as neighborhood solutions the
set of temporal intervals that are within a range of four hours be-
fore and after the last time exploredi.e., tnew ∈ [told−4, told +4].
All the parameters here described were selected because they rep-
resented the best performing values across a large evaluation set.

5.3 Optimization Results
In this section, we discuss the results after running GA and SA

for constructing[H, W ] and[W, H ] mobility matrices.
Table 1 and Table 2 show the results after applying GAs for the

home to work and work to home commuting matrices, respectively.
The tables shows the optimum Temporal Range obtained for each
population size considered and the value of the fitness function
(given by Pearson correlation). The Temporal Range is expressed
by two intervals, the first one indicates the temporal condition for
the origin location and the second one for the destination location.

In Table 1 we observe that using CDRs to compute home-to-
work commuting matrices for the region of Madrid we achieve cor-
relation rates of up to0.82 when compared to the NSI matrices
(ground truth). This result was obtained with an initial population
of 20 candidate solutions and for time slots that define origin as
the interactions that took place between 8pm to 9pm of the previ-
ous day, and destination as the interactions that took placebetween
9am to 10am. Smaller populations yielded worse correlationre-
sults whereas larger populations did not improve the results. On
the other hand, Table 2 shows that the work-to-home mobilityma-
trices computed by GA achieve correlation rates when compared to
NSI matrices of up to0.9059 with an initial population of20 in-
dividuals. In this scenario, the algorithm uses the calls made from
3pm to 4pm to detect the origin location and calls made from 8pm
to 11pm (of the same day) to identify the destination location.

Tables 3 and 4 present the results obtained when using SA. For
the [H, W ] commuting matrices, the best coefficient obtained was
of 0.7863 with origin location detected between 9pm and 10pm
of the previous day and destination location determined from calls
made from 11am to 4pm. In the case of the work-to-home commut-
ing matrices, the highest correlation coefficient is of0.8949 with a
temporal range of 10am to 4pm to detect the origin location and
8pm to 11pm to detect the destination location.



Temporal Range Correlation
[21, 22][11, 16] 0.7863
[21, 22][12, 16] 0.7844
[21, 23][10, 16] 0.7840
[21, 23][14, 18] 0.7808

Table 3: Optimization results when using Simulated Annealing
for the home-to-work [H,W] commuting matrix.

Temporal Range Correlation
[10, 16][20, 23] 0.8949
[14, 17][20, 21] 0.8787
[15, 16][20, 23] 0.8781
[10, 17][21, 22] 0.8724

Table 4: Optimization results when using Simulated Annealing
for the work-to-work [W,H] commuting matrix.

In general the correlation values provided by GA are better than
the ones provided by SA. Also, we observe that in both cases, the
work-to-home commuting matrices are better modelled from CDRs
than the home-to-work (0.90 to 0.82 when using GA, and0.87 to
0.78 when using SA). This result might be related to the fact that
people make more cell phone calls during the day than early inthe
morning or at night, which provides a larger number ofgeographi-
cal points to model commutes from work-to-home than vice versa.
Also, it might be an indication that the home-to-work commuting
follows a less direct route (e.g., taking kids to school), thus adding
noise to the available data.

Finally, the average execution time for GA when consideringthe
best solutions obtained for a population of20 is 2, 890 minutes,
while the average processing time for SA for the best solution is
2, 699 minutes.

6. VALIDATION
The experimental results described in the previous sectionhave

shown that CDRs can be used to construct commuting matrices that
are as good as the one provided by NSI.

In our context, the goal of the validation is to assess whether the
time intervals identified for the[H,W ] and[W, H ] commuting ma-
trices are valid to estimate the commuting matrices of otheryears,
in order to show that CDRs can be used to generate commuting ma-
trices without the need of NSI data. Ideally, the validationprocess
would consider the commuting matrices obtained by the NSI for
2010 and CDR data from 2010, and validate the time intervals us-
ing the similarity betweenCMCDR andCMNSI . Nevertheless, so
far, no commuting matrices for 2010 or 2011 have been published
by the local NSI.

Considering that limitation, we implement a validation process
that uses the 2009CMNSI [H, W ] andCMNSI [W, H ] matrices
and the November 2009 CDR dataset. The intervals we are going
to use are the ones obtained by the GA-based optimization:[20 −
21][09−10] for the home-to-work commute and[15−16][20−23]
for the work-to-home commute. Finally, the validation is done by
calculating the similarity between the CDR matrix obtainedand the
NSI matrix using Equation (5).

Table 5 shows for both home-to-work and work-to-home com-
mutes the Temporal Range used, the correlation values obtained
during the Optimization process using the October 2009 CDR dataset,
and the Validation correlation betweenCMCDR andCMNSI us-

Figure 3: Visualization of the Commuting Matrix obtained for
the municipality of Pinto in southern Madrid, showing the top
five municipalities with the highest confidence value for thework-
to-home commuting.

ing the November 2009 CDR dataset (with its corresponding stan-
dard deviation). We observe that the Validation correlation coef-
ficients are within a 10% of the correlation values obtained in the
Optimization process. It is noticeable that in the case of the work-
to-home commuting there is a slight increment in the correlation,
which, in line with the results discussed in the previous section,
being probably caused by an increase of the CDR data available
during the time slots considered.

These results show that, although with some differences, the op-
timization process provides a good approximation of the time in-
tervals needed to compute commuting matrices, and as a result
future commuting matrices can be directly estimated from CDR
data. This allows for constructing O-D matrices with much more
frequency at a fraction of the cost. The reason for the different val-
ues between the NSI- and the CDR-generated matrices is mainly
caused by the fact that the NSI generates the commuting matrix
strictly using individuals that have a declared work location. As
a result,CMNSI does not capture any non-work related mobil-
ity (which in itself is very difficult to capture using questionnaire-
based approaches). Our CDR approach captures all types of mo-
bility (work, leisure, shopping, students, etc.), so the fact that using
CDR data we can not completely correlate the results with theNSI
is because our matrix contemplates more situations and as such is
more realistic.

6.1 Commuting Patterns by Municipality
The correlation coefficient betweenCMCDR andCMNSI rep-

resents an average value between each individual row-to-row cor-
relation. In an attempt to understand the commuting patterns for in-
dividual municipalities, we compare the rows of each CDR-based
mobility matrix with the rows of its NSI counterpart. Our objec-
tive is to do a preliminary study to understand whether thereare
stronger correlations between both matrices for specific municipal-
ities or on the contrary the correlations are the same acrossall mu-
nicipalities. Figure 3 presents a visualization of the work-to-home
commuting matrixCMCDR for the municipality of Pinto using
November 2009 CDR data. It shows the top five TARs with the



Temporal Range Optimization(Oct09) Validation(Nov09)

Home-To-Work [20, 21][9, 10] 0.8219 0.765 (σ = 0.46)

Work-To-Home [15, 16][20, 23] 0.9059 0.9322 (σ = 0.16)

Table 5: Validation results for the [H,W ] and [W, H ] commuting matrices obtained with November 2009 CDR data.

Municipality % of Population H-W Correlation W-H Correlation

Madrid 50% 0.9995 0.5818

Alcobendas 2% 0.9885 0.8210

San Fernando 1% 0.9120 0.7411

Moraleja de Enmedio 0.0007% 0.0935 0.9895

Villa Conejos 0.0004% 0.1256 0.9972

Table 6: Individual Correlation values for H-W- and W-H for a set of representative municipalities.

highest support,i.e., the top municipalities where people that work
in Pinto live.

Table 5 shows that the standard deviations for home-to-workand
work-to-home correlations are0.46 and0.16, respectively. These
results reveal that there exist large differences in the correlation
values across municipalities, especially for the home-to-work com-
muting patterns. Table 6 presents the individual correlation coef-
ficients for a set of representative municipalities for the home-to-
work and work-to-home commute, including the percentage ofthe
population than they represent. We can observe that the home-
to-work correlation coefficients are higher when the municipality
has a large number of citizens,i.e., larger cities tend to have more
predictable home-to-work commuting patterns than smallerones.
On the other hand, larger municipalities tend to be less predictable
in their work-to-home commutes (have smaller correlation values)
than smaller towns. This is probably due to the fact that in larger
cities citizens tend to do other activities once they get outof work
as opposed to smaller towns where people tend to go directly to
home. Thus, although on average home-to-work patterns appear to
be less predictable than the work-to-home ones (as shown in Ta-
bles 1 and 2), that is only the case for small municipalities.In large
ones, the opposite holds, whereby the larger the city, the more pre-
dictable the home to work mobility matrices are (when compared
to the work to home mobility matrix).

These preliminary results seem to indicate that incorporating the
size of the municipalities in the optimization process could improve
the final correlation values. Also, we consider that having more
data to generate the O-D matrix will, to some extent, mitigate the
current limitations regarding the predictability of smallmunicipali-
ties (consider that because we only use Monday through Thursday,
in the end we have 17 days of traffic for the optimization process).

7. RELATED WORK
The construction of O-D matrices has been typically studiedby

transportation and urban planning research. Traditional solutions
are based on questionnaires and/or in the combination of ques-
tionnaires with traffic information. Due to the limitationsof the
data available, such solutions have typically focused on generaliza-
tion techniques that construct unbiased matrices from partial data.
The main approaches used to obtain traffic data information include
video processing [13] or electronic toll collection mechanisms [11].

Nevertheless, these approaches are limited because the information
provided only reflects a partial view of the route and becausethey
only gather information from a unique means of transportation. A
possible solution for these limitations is the use of GPS data. In
this case, the information contains complete routes but theamount
of data available is even more limited [19]. In general, the use of
GPS data for estimating O-D matrices is not feasible, mainlydue
to privacy concerns, but also due to the limited scalabilityof the
results caused by the limited amount of data available. The studies
done up to now focus mainly on GPS data available from taxi or
bus fleets[19] which highly limits the conclusions.

The use of Call Detail Records(CDR) to model behaviors related
to commuting patterns solves to a large extent the previous limita-
tions. A variety of studies can be found in the literature: the work
by Caceres et al.[5] uses GSM simulated traces to construct origin-
destination data to measure the flow of vehicles, Zhang et al.[20]
presents a model to transform cellular counts into vehicular counts
in order to construct commuting matrices, and Sohn et al. [17] in-
troduced cell phone probes in the network to identify trajectories
and estimates O-D matrices using handoffs.

Our approach has a set of differential factors with these previous
studies: (1) we use CDR data that does not contain any handoff
information. Handoff information consists on storing the sequence
of towers used during a conversation and although they provide
more information, cell phone operators do not keep such datadue
to privacy concerns (also consider that information would actually
be useful only if using cell-phones was allowed while driving); (2)
our approach is able to capture the cultural schedules involved with
commuting patterns for different urban environments and (3) our
approach focusses on showing that the traditional questionnaire-
based approaches for estimating O-D matrices can be approximated
by the technique we present. While the state of the art mainly
presents techniques to construct O-D matrices and assumes that the
quality of the data will imply good results, in our case the technique
we propose uses the information contained in questionnaire-based
O-D matrices to tune the parameters and validate the results.

From this perspective, our work has elements in common with
the work by Calabrese et al. [6] in the sense that the validation of
the technique is done with external O-D matrices obtained using
traditional approaches. The difference in our case is that we also
use that same information to identify the best parameters tocon-



struct O-D matrices with CDR in order to approximate the values
of traditional approaches. This allows us to present a technique
that can be adapted to capture the different cultural schedules of
different urban areas.

Some authors identify the construction of O-D matrices using
CDR as the identification of home and work for each user, using
that information to aggregate origin-destination patterns. The work
by Frias-Martinezet al. [8], Isaacmanet al.[9] and Calabrese et
al. [6] present algorithms to detect home and work from call detail
records by identifying highly used cell-phone towers. Neverthe-
less the use of such algorithms has strong limitations that affect the
construction of O-D matrices, mainly: (1) the error introduced by
the algorithms in the estimation of the locations (which in general
is not measurable due to the lack of ground truth data); and (2)
the fact that the coverage is limited by the availability of informa-
tion for each user,i.e., home and work can only be detected for
individuals that have a minimum amount of interactions withtheir
cellphone. Depending on the context, this requirement can filter
more than 80% of individuals[8], with the corresponding bias in
the final matrix. Our approach does not focus on identifying home
and work as a base for constructing an O-D matrix, and as a re-
sult, we do not filter individuals that do commute but whose calling
frequency does not allow for the identification of home and work.

8. CONCLUSIONS
Traditional methods for the estimation of mobility matrices suf-

fer from a variety of limitations, mainly the bias of the information
collected and the cost of gathering such information. To overcome
these issues, we have presented a method based on the data col-
lected by cell phone infrastructures to generate commutingmatri-
ces. In the literature we can find similar approaches, but in our case
we have focussed our study on showing that we can replicate the
information contained in questionnaire-based O-D matrices.

Our approach is implemented with CMTAR, a TAR-based algo-
rithm designed to construct commuting matrices from CDR data.
The combination of CMTAR with optimization techniques pro-
vides an approach that identifies which parameters need to beused
to construct commuting matrices from CDR that are as similaras
possible to the original NSI matrices. Our method computes com-
muting matrices without the need of collecting survey information,
which as a result provides a cost efficient tool to generate O-D ma-
trices as frequently as needed. Our experimental evaluation and
validation has showed that we can compute commuting matrices
with a high level of accuracy using CDR, and as a result our CDR
generated matrices can be used for the same purposes as traditional
matrices.

Our future work will study the evolution of commuting patterns
over time. Additionally, we plan to improve the optimization pro-
cess by incorporating weights as a means to compute more accurate
home-to-work and work-to-home commuting matrices.
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