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Abstract

Urban hotspots can be used to model the structure of urban environments and to study or predict
various aspects of urban life. An increasing interest in the analysis of urban hotspots has been
triggered by the emergence of pervasive technologies that produce massive amounts of spatio-
temporal data including cell phone traces (or Call Detail Records). Although hotspot analyses using
cell phone traces are extensive, there is no consensus among researchers about the process
followed to compute them in terms of four important methodological choices: city boundaries, spatial
units, interpolation methods and hotspot variables. Using a large scale CDR dataset from Mexico,
we provide a systematic spatial sensitivity analysis of the impact that these methodological choices
might have on the stability of the hotspot variables at both inter-city and intra-city levels.
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Introduction

Urban environments can be characterized using different approaches, such as land use, mobility matrices,
or activity centers (a.k.a. hotposts). The recent availability of pervasive technologies has triggered new
ways of studying cities using different data sources such as social networks, GPS, public transport
information and also cell phone traces.

Cell phone traces (or Call Detail Records, CDRs) are collected by telecommunication networks for
billing purposes and provide - among other features - spatio-temporal data about mobility behavior.
Although the locations are not in GPS format, but rather represent the location of cellular towers, CDR
data has proved to be useful in modeling a variety of human mobility behaviors such as analyzing daily
patterns to understand the pulse of a city (Ratti et al. 2006; Calabrese et al. 2011; Reades et al. 2007,
Gao 2015; Ahas et al. 2015); investigating the correlation between human mobility patterns and land-use
patterns as well as urban functions (Reades et al. 2007, 2009; Bachir et al. 2017; Noulas et al. 2013;
Tu et al. 2017); clustering geographic units as dense regions to understand city dynamics at large scale
(Vieira et al. 2010; Doyle et al. 2014); or detecting events within a city, i.e., large gatherings of people
within a short period of time (Traag et al. 2011; Dong et al. 2015).
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A critical area in mobility behavior analysis is the identification of activity centers or dense regions
a.k.a. hotspots, defined as regions with high concentration of individuals for a given period of time (Ratti
et al. 2006; Vieira et al. 2010; Louail et al. 2014; Hoteit et al. 2014). Hotspot analyses using CDR data
are generally carried out in two different scenarios (1) modeling, with a focus on analyzing the urban
structure, such as the quantification of the urban sprawl or compactness of cities (Louail et al. 2014;
Xu et al. 2019); or the analysis of the spatio-temporal evolution of popular locations for a given region
(Zuo and Zhang 2012; Ghahramani et al. 2018); and (2) prediction, with a focus on the analysis of the
predictive power of dense regions with respect to a given variable; for example, high footfall (number of
estimated visits) in a region has been associated to high crime (Bogomolov et al. 2015; Traunmueller et al.
2014), or large numbers of individuals at night or work times have been associated to the identification of
home (residential) and work locations (Isaacman et al. 2012; Becker et al. 2011). These studies are often
carried out at two different spatial scales: intra-city, where researchers focus on models or predictions for
a given city (Ratti et al. 2006; Reades et al. 2007); and infer-city, where researchers focus on comparing
behaviors across cities (Louail et al. 2014; Ahas et al. 2015).

Although hotspot analyses using cell phone traces are extensive, there is no consensus among
researchers about the process followed to compute them in terms of three important features: (i) city
boundaries used to define the area under study e.g., some researchers use metropolitan areas (Louail
et al. 2014) that represent cities as labor market areas comprising commuting behaviors, while others use
a smaller entity - the core municipality - which represents the physical boundary of a city rather than its
economic activity, and which is generally contained within a metropolitan area together with other non-
core municipalities (Ratti et al. 2006; Demographia 2020); (ii) spatial units considered to compute the
hotspots, which in the literature range from using Voronoi polygons that simulate cell phone coverage
areas (Vieira et al. 2010; Trasarti et al. 2015; Gao 2015); to uniformly distributed grids (Louail et al.
2014; Isaacman et al. 2012; Douglass et al. 2015; Candia et al. 2008; Balzotti et al. 2018; Sagl et al.
2014; Reades et al. 2009, 2007; Tu et al. 2017); or census tracts (Doyle et al. 2014; Bachir et al. 2017),
with the latter two approaches requiring the use of interpolation methods (Bachir et al. 2017; Peredo et al.
2017; Ahas et al. 2015; Kubicek et al. 2019) to distribute individuals associated to a given cellular tower
across grids or census tracts; and (iii) hotspot variables used to measure and characterize the computed
hotspots, such as the total number of hotspots for a region or hotspot compactness measures (Fryer and
Holden 2011; Angel et al. 2010). The combination of these different features could produce significant
differences in the hotspots identified, which could in turn provide conflicting findings.

In this paper, we provide a spatial sensitivity analysis of the impact that the choice of a given set of city
boundaries, spatial units and interpolation methods might have on the stability of the hotspot variables
computed using cell phone traces (CDR). The recommendations of these analyses will provide guidelines
for researchers looking to identify the most stable combination of parameters that will preserve the
stability of the CDR-based hotspots independently of the city boundaries, spatial units and interpolation
methods selected; and will also pinpoint into risky combinations of features that might produce non-
stable, CDR-based hotspot measures. Additionally, these recommendations will also guide researchers
into whether results across papers can be compared or not, based on the reported stability of certain
combinations of features.

The systematic analysis will be carried out for two cases: inter-city and intra-city, where most of the
related literature in CDR-based hotspot analyses has focused. Inter-city analyses will evaluate the stability
of the city-rankings, based on a given hotspot variable, across different combinations of city boundaries,
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spatial units and interpolation methods; while intra-city analyses will assess the stability of a hotspot
variable - computed hourly and represented as a 24 hour vector - across different combinations of city
boundaries, spatial units and interpolation methods. Next, we will review some related work, followed
by our methodology in depth. Then we will present and discuss the results.

Related Work

As discussed in the Introduction, hotspot analyses are typically carried out at inter-city and intra-city
scales, and with two complementary research objectives in mind: (1) to model the urban structure or
human dynamics, or (2) to understand the predictive relationship of hotspots with other aspects of urban
life. When modeling human dynamics at the intra-city level, researchers have focused on the structure
for a given city overtime. Rubio et al. (2013) and Vieira et al. (2010) visualized the temporal evolution
of hotspots to demonstrate the convergence and divergence pattern of a city. Reades et al. (2007) and
Gariazzo et al. (2019) clustered the spatial units based on the temporal variation of density to identify
regions with different temporal patterns. At the inter-city level, researchers generally compare the urban
structure among different cities. Louail et al. (2014) used number of hotspots and compacity coefficient
to quantify the hotspots for each city; Xu et al. (2019) computed proximity and agglomeration and Li
et al. (2014) used normalized mass moment of inertia to measure the compactness of cities. On the other
hand, when using hotspots as a tool to study or predict different aspects of urban life researchers have
shown that, at the intra-city level, dense areas are associated with high volumes of crimes in London, UK
(Bogomolov et al. 2015; Traunmueller et al. 2014). At the inter-city level, Louail et al. (2014) showed the
number of hotspots is positively correlated with the cities’ population. Xu et al. (2019) found a U-shape
non-monotonic effect between the compactness of hotspots and GDP per km?2. Burton (2000) observed
that compact cities tend to have higher crime rate; and Guo et al. (2019) showed a negative correlation
between urban sprawl and income segregation. However, all these papers have divergent methodological
choices for hotspot analyses, with often times unjustified choices for city boundaries, spatial units and
variables used to quantify the hotspots. As a result, these approaches might suffer from the well known
modifiable areal unit problem (MAUP) (Openshaw 1984), i.e., the areal units (zonal objects) used in
many geographical studies are arbitrary, modifiable, and studies like Strominger et al. (2016) suggest,
these methodological choices could introduce conflicting findings if not carefully examined. Therefore,
in our study, we will conduct systematical analysis of the impact from these methodological choices to
provide insights about how to avoid potentially conflicting findings.

Methodology

Hotspot analyses using CDR data are critical to study city dynamics and the spatial structure of cities. To
detect hotspots, researchers generally follow a set of common steps, although its implementation varies
widely depend on research focus, application area or data availability. In this section, we will explain
the different choices that researchers have in hand when computing hotspots, and we will describe the
methodology we will use to assess the impact that the choice of varying feature combinations might have
on the stability of a given hotspot measurement variable, both at the inter-city and intra-city levels.
Researchers generally follow these four steps to the identify the hotspots in a region: (i) define the
city boundary of the city under study, (ii) define the type of spatial units used to compute hotspots, and
estimate the population for each spatial unit, (iii) detect hotspots based on the estimated population, and
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Figure 1. Hotspot Identification Process. The grey areas in Step 1 are the areas considered in each city
boundary setting e.g., the grey areas in Urban settings are urban areas, while the white areas are the rural
areas. The outer boundary is the metro area boundary and the inner boundaries are the municipalities’
boundaries.

(iv) compute hotspot indices to quantitatively characterize crowded regions in a city. Next, we explain
each component in Figure 1 in detail.

City boundaries

The delimitation of cities or urban areas is in itself one of the traditional tasks in urban geography and
planning (Oufednicek et al. 2018). Although not the focus of this paper, it highlights the importance of
understanding the impact that different city delimitations might have on hotspot analyses. Most related
studies focused on the computation of CDR-based hotspots consider two different dimensions.

The first one is the definition of the physical city boundary. While some researchers define cities
by their metropolitan area (Louail et al. 2014; Gariazzo et al. 2019), others only consider the urban
core (Ratti et al. 2006; Chen et al. 2018; Zhao et al. 2016; Schwarz 2010; Kubicek et al. 2019).
Metropolitan areas are often defined as an aggregation of municipalities that share industry, infrastructure
and housing, and that represent the economic city with a densely populated urban core area - that might
span across multiple municipalities - and its surrounding rural, less-populated areas. On the other hand,
municipalities are generally smaller spatial units embedded within a metropolitan area, with its urban
core representing the physical boundary of the city and the region that has emerged historically as the
most prominent in the metropolitan area (Demographia 2020). Therefore, when the term city is used in
current CDR-based hotspot analyses, it is important to understand whether it refers only to the densely
populated areas within a metropolitan area (Ratti et al. 2006; Chen et al. 2018; Zhao et al. 2016; Schwarz
2010); or to the metropolitan area as a whole, including both the densely populated urban area and its
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less-populated, rural surrounding territories (Gariazzo et al. 2019; Le Néchet 2012; Louail et al. 2014).
See Urban and UrbanRural columns in Figure 1.

The second dimension focuses on whether to treat the metropolitan area as a whole unit to compute
hotspots, or to consider each embedded municipality independent of each other, albeit connected by
secondary population flows. Since metropolitan areas delimit the economic city, with mobility flows
between its core urban area and other regions, it makes sense to identify hotspots at that scale, which
would mostly characterize the commuting population (Le Néchet 2012; Louail et al. 2014). However, by
computing hotspots at that scale, local characteristics or economic structures of individual municipalities
might be ignored. For example, non-core municipalities within a metropolitan area might be sub-centers
for jobs in the region (Oufednicek et al. 2018). As a result, the mobility patterns characterizing these
municipalities might be more affected by its internal flows that by movements to and from other
municipalities (Gariazzo et al. 2019).

To carry out a comprehensive assessment of the different city boundary settings that are used by
researchers when computing CDR-based hotspots, we propose to explore the following four settings:
(i) Metropolitan Area Urban-Rural (Metro-UR), where hotspots are computed across the the whole
metropolitan area that includes all urban and rural areas; (ii) Metropolitan Area Urban (Metro-U),
where hotspots are computed across the whole metropolitan area which is defined exclusively by its
urban areas; (iii) Municipalities Urban-Rural (PerMuni-UR), where hotspots are computed per individual
municipality, and considering both urban and rural areas within the municipality; and (iv) Municipalities
Urban (PerMuni-U), where hotspots are computed individually only for the urban areas within each
municipality. The boundary setting is denoted as b with b € {Metro-UR, Metro-U, PerMuni-UR,
PerMuni-U}. An example of the four different boundary types are shown in Step 1 in Figure 1.

Spatial units and interpolation methods

Voronoi tessellation is a common spatial unit of choice when using CDR data to understand population
dynamics (Vieira et al. 2010; Sevtsuk and Ratti 2010; Doyle et al. 2014; Trasarti et al. 2015; Gao 2015).
For each cell tower c in the cell phone infrastructure, Voronoi tesselation is used to represent its spatial
coverage or service area (see Figure 2). The assumption on which Voronoi tessellation is based is that
users would always use the closest cell tower. In this way, researchers associate to a given Voronoi
polygon v, all the individuals that have been observed at that cell tower c. However, Voronoi polygons
(Vor) are not the only type of relevant spatial unit. Some researchers have focused on spatial regularity
and have chosen grids (G) (Louail et al. 2014; Isaacman et al. 2012; Douglass et al. 2015; Candia et al.
2008; Balzotti et al. 2018; Sagl et al. 2014) as the spatial units of interest, while others prefer to census
tracts or blocks (CT) (Doyle et al. 2014; Bachir et al. 2017) because these are the same geographic units
as census data and can represent the boundaries of neighborhoods to some extent. In this paper, we will
denote the type of spatial unit as ¢ with ¢ € {CT, G, Vor}.

Voronoi tessellation assigns a set of individuals to a given Voronoi polygon, and the number of
individuals i.e., the footfall, is then used to compute hotspots. However, when using grids or census
tracts, or when a Voronoi polygon needs to be clipped because it spreads outside the boundary of a city or
a municipality, additional processing is required to assign the presence of individuals to a different spatial
unit. Grid and census tracts polygons will overlap with Voronoi polygons, and as a result, interpolation
methods that approximate the footfall in a given overlapping polygon area is required (see Figure 2 for
an example). Similarly, clipped Voronoi polygons will require to approximate the footfall for any given
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(a) Grids (b) Census tracts

Figure 2. An example of grids intersecting with Voronoi polygons (the underlying grey polygons). The
locations of cell towers are represented as black triangles. Grids or census tracts in red, green and blue
intersect with three, two and one Voronoi polygons, respectively. For example, G intersects with Vor; and
Vors, G intersects with Vorz, CT; intersects with Vor; and Vors and CT. intersects with Vor .

sub-polygon. With that objective in mind, we explore three types of interpolation methods commonly
present in the literature: uniform (Uni), population-based (Pop) and inverse-distance (Idw) (Louail et al.
2014; Bachir et al. 2017; Peredo et al. 2017). In this paper we will denote the interpolation methods as ¢
with ¢ € {Uni, Pop, Idw}.

The most common interpolation method in the CDR literature is the uniform method (Uni) (Louail
et al. 2014; Kubicek et al. 2019; Kang et al. 2012). This method assumes that all individuals are located
within a given polygon uniformly. Therefore, the number of individuals in any grid or census tract
polygon overlapping with a Voronoi polygon will be proportional to its area. Let v be the set of Voronoi
polygons intersected with spatial unit u, v, be the Voronoi polygon and n. be the footfall in cell tower c,
the interpolated footfall 7, ;-uni using the Uniform method for u is computed as follows:

Area (Intersection (u, v
Ny, i=Uni = Z ( ( C)) ()

n
= Area (v,.) ¢

The limitation of the Uniform method is that people are unlikely to be distributed over a spatial unit
uniformly, especially for vast rural areas where people are less likely to be present. Therefore, researchers
have used population-based methods (Pop) that distribute the footfall of a Voronoi polygon over a spatial
unit proportionally to the population density e.g., urban areas in the spatial unit are assigned larger
numbers of individuals than rural areas (Bachir et al. 2017). The population-based method requires
information about census population. Let the given census population distribution be at the census tract
level, y, be the shape and p, be the population of the z-th census tract. The census population is assumed
to be normally distributed within ¥, as no finer-grained information about population is available. Let
S be an arbitrary polygon e.g., a spatial unit or the intersection between a spatial unit and a Voronoi
polygon. If S itself is a census tract, the population of S'is straightforward. That is one of the reasons
why some researchers prefer to use census tract as spatial units. But if .S is not a census tract, then S
intersects with a set of census tracts denoted as y. The population of S is computed as:
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Let v be the set of Voronoi polygons intersected with spatial unit u, v. be the Voronoi polygon and n.
be the footfall for cell tower c, the population-based method interpolates the footfall n,, ;-pop at a given
spatial unit v proportional to the population, instead of to the total area:

Ty i=Pop = Z Pop (Inte;(s)zc(t;();l (U, Uc)) *TNe (3)
VeEV ¢

Nevertheless, the population-based method has an important drawback since the population retrieved
from the census will represent residential population rather that footfall, which might affect the way
population dynamics in non residential areas are computed. Also, both uniform and population-based
methods assume that the association of individuals to the closest cell tower location is always correct,
which might not be the case specially for users who are at the boundaries of a given Voronoi polygon.
Thus, researchers have used a third method to overcome this limitations, the inverse distance weighting
(Idw) (Peredo et al. 2017; Ahas et al. 2015) that determines that the number of individuals in a spatial
unit is the weighted average of its neighbor cellular towers where the weights are inversely proportional
to the distance. The distance between a spatial unit and a cell tower is computed using their centroids. It
is important to clarify that this method has only been used by researchers in combination with grids, not
census tracts (Peredo et al. 2017; Ahas et al. 2015). Given v as the set of neighbor Voronoi polygons of
spatial unit u, n. as the footfall for cell tower ¢, and d(u, v.) as the distance between the centroids of u
and v., the interpolated population for u is computed as follows:

1
Dveew T e

* Vet d U, Ve
nu,i=ldw = ( 1 ) (4)
Zvcev d(

U, ve)

Let s(®") be the set of spatial units and v(*?) be the set of Voronoi polygons intersecting with all
spatial units in city a under boundary setting b. Interpolating using inverse distance weighting does not
guarantee the sum of all n’ for u € s(»?) to be the same as the sum of all n. for v, € v(@?)

u,a=Idw
Therefore, we re-scale n;; . 4., as follows:

o x Zvcé'u(‘%b) Ne
Ny i=ldw = Ty j=Idw
X

&)

*
cslab) nu,i:ldw

In summary, we consider in our paper the following combinations C' of spatial units and interpolation
methods: (CT, Uni), (CT, Pop), (G,Uni), (G, Pop), (G, Idw), (Vor,Uni), (Vor, Pop), with grids of
500 x 500 meters, since this is one of the most common choices in the literature (Tu et al. 2017,
Louail et al. 2014; Chen et al. 2018; Yang et al. 2016; Rubio et al. 2013). This is not meant to be
a complete list of combinations. There are different types of spatial units and interpolation methods of
interest. For example, one could take into account the terrain or land cover information to assign different
relative population density (Scholz et al. 2013; Deville et al. 2014). Here we aim to analyze commonly
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Figure 3. Loubar hotspot detection for a set of U spatial units with interpolated population. 1) the units are
sorted in ascending order by the population; 2) draw the Lorenz curve of the accumulated population with
x-axis being the ranking of units normalized by U; 3) compute the intersection of the tangent line at x=1.0 (the
red line) and the x-axis. Let the intersection point be (X, 0); 4) The threshold ¢ is the population of the

U * (1 — X)th spatial unit; 5) all spatial units with population > § are the hotspots detected. The detailed
explanation of Loubar method can be found in Louail et al. (2014).

used methods to shed light on potential stability issues. An example of the different spatial units and
interpolation methods explored are shown in Step 2 in Figure 1.

Hotspot detection

To compute the hotspots of a city, we need to first identify the spatial units with a significant number of
individuals. Hotspot detection is a binary classification problem, where the spatial units with a estimated
number of people above a threshold value 6, i.e., n,, > J, are considered as hotspots.

There exist different methods to determine the threshold § (Hoteit et al. 2014; Giuliano and Small
1991). However, as previous work has shown, § can be constrained within a lower and an upper bound
(Louail et al. 2014). Given the estimated footfall for a set of spatial units, the lower bound of ¢ is defined
as the average of the set of footfall values. On the other hand, the upper bound i.e., the strictest definition
of hotspot, is computed using the Loubar method based on the Lorenz curve. The Loubar method is
briefly explained in Figure 3. In this paper, we will focus on the use of the upper bound, since it constitutes
the strictest approach to measure the spatial structure of the most important places, and a result, strongest
common denominator across different thresholds considered in the literature.

Given a CDR dataset, the Loubar method will be applied as follows. We will first aggregate the
number of unique users for each cell tower c to obtain the average hourly number of unique users:
e = {Tien 3o o» Where n j, represents the average of unique users between £:00:00 and h:59:59. Using
equations (1) - (5), we can calculate the interpolated population with method 7 for a spatial unit u:
ﬁui = {ﬁu i, h}i3 0

Let s(®?) be all the spatial units in city a, s(a ) be the spatial units in a municipality m in city a in
boundary setting b, and N s.i.h = {Tu.i,h fucs e the interpolated population using method i for a set
of spatial units s at hour h. We apply the Loubar hotspot detection method to IN g(a.b) 4i,n 1f b is Metro-
UR or Metro-U, or apply Loubar to N ROD ,, for each municipality m in city a if b is PerMuni-UR
or PerMuni-U to compute the threshold value 5 and detect whether a spatial unit « is a hotspot at hour
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h. Finally, a spatial unit will be identified as a hotspot if it is permanent i.e., it is considered a hotspot
throughout the 24 hours of the day (all-day) 1., = 1 for 0 < h < 23 (Louail et al. 2014). This binary
decision can be denoted as:

1Lif iy p >0
Dy =4 o wih = ©)
0,if My i < 0

However, since population density (Le Néchet 2012) and employment density (Giuliano and Small
1991) are often used in quantitative geography, which roughly correspond to the presence of people
during nighttime and daytime, in this paper we will also explore home-hour and work-hour hotspots.
These are formally defined as permanent hotspots during working hours (9am-5pm) or home hours
(10pm-5am) i.e., 1, = 1 for hy < h < he with hy =9 and h, = 17 and with h, = 22 and h, = 5,
respectively.

Hotspot measurement variables

In this paper, we will explore three types of hotspot measurement variables or indices that have been
traditionally used in related literature for hotspot analyses at inter-city and intra-city levels: (1) scale of
the hotspots, (2) degree of urban sprawl and (3) urban compactness. The first type quantifies the number
of hotspots detected and the geographical area covered by them. The last two types of indices focus
on the quantification of urban structure (Louail et al. 2014; Le Néchet 2012; Schwanen et al. 2001;
Ewing 2008; Tsai 2005; Anas et al. 1998). Research in quantitative geography and urban economics has
shown the importance of studying urban structure, as it can shape people’s mobility in terms of travel
distance, model choice and car usage (Schwanen et al. 2001; Le Néchet 2012), the transportation system
in terms of energy consumption or air pollution (Le Néchet 2012; Ewing 2008), and economic growth
performance (Xu et al. 2019; Huang et al. 2007). Next, we explain each set of indices in detail.

(1) Hotspot Scale quantified in terms of number and the total geographical area covered by the hotspots
detected:

e Number of hotspots (NHS): The number of spatial units that are detected as hotspots.
e Area of hotspots (AHS): The total geographical area of the spatial units that are detected as
hotspots.

(2) Urban sprawl represents a type of metropolitan decentralization or sub-urbanization where
a large percentage of a city’s residential and/or business activity takes place outside of its central
location (Wassmer 2000). We use the following indices to quantify the degree of urban sprawl:

e Compacity coefficient (COMP) (Louail et al. 2014) measures the sprawl of the detected hotspots
over a city, with smaller COMP values associated to less dispersed hotspots with respect to the
size of the city. Let hs be the set of hotspots, |hs| be the number of hotspots and d; j the distance
between the centroids of spatial units u; and u, COMP is computed as Equation (7):

|hs| 5~ |hs]
D s j= =4 d',
COMP= " __ D, = 21 2uimjer ik 7

VArea(ra,) " [hs(Jhs| - 1)/2
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Mass Compacity coefficient (MCOMP) (Le Néchet 2012) is a modified compacity coefficient that
weights the distance between hotspots by the population of each spatial unit, and measures the
average distance between individuals located within the detected hotspots. The smaller MCOMP
is, the less dispersed the hotspots are with respect to the size and population of the city. Let p; be
the population in spatial unit u;, MCOMP is computed as follows:

Ihs| < Ihs]
MD;, 2 i1 45 kD5 PR
mcomp = —MPhe v 2 e ®)
Area(rq,p) Zj:l Zk=j+1 Dj Pk

(3) Urban compactness is closely related to urban sprawl: the larger the degree of urban sprawl, the
smaller the compactness of a city. However, one of the major differences between urban compactness
and urban sprawl indices is that sprawl is always measured with respect to the size of a city e.g., the
indices are normalized by the square root of the geographical area, while compactness is based on the
assumption that the most compact form of a shape is a circle (Angel et al. 2010). Therefore, compactness
indices measure compactness in terms of geometrical properties, and are thus normalized by the reference
circle, e.g., an equal-area or equal-perimeter circle. Urban compactness indices range from O to 1, with 1
representing the exact continuous cirle. We consider the following four indices that are commonly used
in hotspot measurement literature:

Cohesion (COHE) (Angel et al. 2010) is the ratio of the average distance-squared among all points
in the reference circle and the average distance-squared among all points in the hotspot areas. Large
cohesion means people in hotspot areas are very close to each other.

Proximity (PROX) (Angel et al. 2010) is the ratio of the average distance from all points in the
reference circle to its centre and the average distance to the geometry center of the hotspot areas.
The proximity index focuses on the distance between points from the geometry center instead of
the point-wise distance in the cohesion index.

Normalized moment of inertia (NMI) (Li et al. 2013) is based on the dispersion of points from the
center of its shape. It involves the calculation of the second moment of an area about a point, also
known as the moment of inertia (MI). The MI is then normalized by the MI of the reference circle,
hence normalized moment of inertia. The calculation of NMI is explained in (Li et al. 2013).
Normalized mass moment of inertia (NMMI) (Li et al. 2014) takes into account the mass
distribution of a shape. The previous three compactness indices consider only the geometric shape
i.e., each point in the shape is equally important in the compactness. Nevertheless, in our case, each
hotspot might have a different estimated population or mass, and they can still be compact - even
though their geometry shape is not - by having the majority of the population concentrate around
the mass center. The reference circle in NMMI is no longer an equal-area circle, but a circle with
equal-effective-area. The calculation of NMMI is explained in Li et al. (2014).

Hotspot index stability

Hotspot indices are often used as a lens to study various aspects of urban life, and have been used to
compare cities (inter-city analyses) (Louail et al. 2014; Ahas et al. 2015; Schwarz 2010; Huang et al.
2007), or to compare hourly hotspots within a city of interest (intra-city analyses) (Ratti et al. 2006;
Reades et al. 2007; Kubicek et al. 2019; Tranos and Nijkamp 2015; Ahas et al. 2015). For example,
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research has shown that high density cities in the UK share higher levels of public transportation use by
low-income residents (Burton 2000); while other studies have revealed that hotspot compactness has a
significant negative correlation with purchasing power parity in cities in Asia, US, Europe, Latin America
and Australia (Huang et al. 2007).

Nevertheless, the choice of city boundaries, spatial units and interpolation methods prior to the
computation of hotspots and hotspot indices could produce significant differences in the hotspots
identified, which could in turn provide conflicting findings. For example, a researcher interested in using
hotspots to predict crime in a city, could find a strong correlation or no correlation at all, depending on
the set of city boundaries, spatial units and interpolation methods as well as hotspot variables considered;
or a researcher interested in comparing number of hotspots across cities, could identify largely different
city-rankings depending on the sets of features used.

The main objective of this paper is to provide a systematic analysis of the impact that the choice
of a given set of city boundaries, types of spatial units and interpolation methods might have on the
stability of the hotspot indices presented. The recommendations of these analyses will provide guidelines
for researchers looking to identify the combination of parameters that will preserve the stability of the
hotspot indices; and will pinpoint into risky combinations of features that might produce hotspot indices
with little stability. Next, we explain our approach to measuring the stability of a hotspot index for both
inter-city and intra-city scales.

Inter-city Index Stability. Inter-city analyses focus on comparing rankings of cities based on a given
hotspot index, or on comparing rankings of cities based on correlations between a given hotspot index
and another urban feature such as crime or economic growth. Thus, to measure the stability of a given
inter-city index, we propose the following approach. For each combination of city boundary b, type of
spatial unit ¢ (Vor, G or CT) and interpolation method ¢ (Uni, Pop or Idw), we compute the hotspots
and hotspot indices described in the methodology section across all cities under study. Next, we conduct
Spearman correlation for each pair of city rankings resulting from different combinations of features, and
compute the stability of an index for a given citye boundary, as the average of all correlation coefficients
across spatial units and interpolation methods. High average correlation coefficients across combinations
of features will reveal that the hotspot index is stable i.e., the ranking of the cities for a given index
is similar independently of the spatial features used. Researchers could select any set of features since
the rankings do not appear to change, and as result, any correlation analyses between hotspots and other
features would also be robust. On the other hand, low average correlation coefficients will identify indices
that should not be used since the rankings vary widely depending on the combination of features.

Let C = {(CT,Uni),(CT, Pop), (G,Uni), (G, Pop), (G, Idw),(Vor,Uni),(Vor, Pop)} be the
list of combinations of type ¢ spatial units and interpolation method ¢ considered in this study, with |C'| as
the number of combinations and C; as the j-th combination where 1 < j < |C|. For each hotspot index
ind € {NHS, AHS, COMP, MCOMP, COHE, PROX, NMI, NMMI}, city boundary b and combination
C; = (t;,1;), we first compute the permanent hotspots (all-day/work-hour/home-hour) and then compute
the index values for all cities under study. Each combination C; will produce an array of index values, one
per city, defined as indy, ¢, . Next, for each pair of combinations C'; and C};, we compute the correlation
coefficient for index ind and city boundary b as:

Coe findp,j,x = Spearman(indy ¢, , indy, ¢, ) 9)
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The coefficient measures the similarity of rankings among cities. Then the stability for index ind and
city boundary b is computed as:

1
Stabilityinap = T Coefind,b,j.k 10)
icl(C]—1) LK%:’W o

Intra-city Index Stability. Intra-city analyses generally focus on comparing hotspot rankings across
time for a given city. Index stability at the intra-city level is helpful to identify the indices that provide
similar hourly rankings independently of the spatial and interpolation features used. Stable indices can
thus be used to robustly study the relationship between hotspots and urban growth or transportation
efficiency, for example; while unstable indices will be discouraged from use given the variability of
the rankings they provide. To measure the stability of an index at the intra-city level, given a city a
defined using an city boundary setting b, we first compute the hotspots at each hour . using combination
Cj = (tj,i7). This yields a 24-hour vector ind; ¢, , for each combination C; and city a. Pairs of
combinations C; and C'; are compared in terms of ranking similarity in city a via Spearman correlation.

Coe find,b,a,j,x = Spearman(indy, ¢, 4, indp ¢, a) an

The intra-city level stability for index ¢nd at city a using city boundary b is the computed as:

1
Stabilitying pa = —————~ Coefindb.a.i 12
avLlitYind,b, |C| (|C| — 1) ' Z , Oef d,b,a,j,k ( )
3,k<|Cl, j#k

Finally, to identify the stability of a given index for a certain city boundary and spatial combination,
we average the stability measure across all the cities a € A under study:

A
. 1 .
Stabilityina,p = 1 g StabilitYing,p,a (13)

a=1

Spearman correlation coefficients will be interpreted as follows (Statstutor 2020): a stability score in
range of [0.8,1) is considered very strongly stable; in range of [0.6,0.8) is considered strongly stable;
moderately stable in the [0.4,0.6) range; weakly stable in the range of [0.2,0.4) and unstable in the
[0.0,0.2) range.

Results
Study areas and Dataset

To carry out our analyses, we use pseudonymised CDR data from the 59 top metropolitan areas in Mexico
(see Figure 4). The data covers cell phone activity from October 2009 to June 2010. No individual data
has been used, only aggregated statistics at the cell tower level to quantify the number of unique users
per hour. City boundaries have been defined using official shapefiles for metropolitan areas as defined by
CONAPO, the National Population Council in Mexico (CONAPO 2015). Municipalities, census tracts
(known as AGEBs in Mexico) and urban and rural areas have been extracted from INEGI, the statistical
department in Mexico (INEGI 2010), with data from 2010.
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Figure 4. 59 metropolitan areas in Mexico

Metro Metro PerMuni PerMuni Metro Metro  PerMuni PerMuni Metro Metro PerMuni PerMuni
UR u UR u UR u UR u UR u UR u

NHS 0.42 (0.30)

0.39 (0.31)

AHS

0.37 (0.24)

0.33 (0.24)

CcomP COMP

McOMmP McomP

COHE ' 0.40 (0.19) COHE | 0.41(0.19) 0.35 (0.22)

PROX ' 0.40 (0.19) PROX | 0.41 (0.19) PROX  0.37 (0.22)

0.44 (0.19)
0.45 (0.19)

(a) All-day (b) Work-hour (c) Home-hour

0.40 (0.19) NMI 0.41 (0.19) NMI 035 (0.22)

NMMI 041 (0.17) NMMI | 0.43 (0.19) NMMI  0.42 (0.19)

Figure 5. Stability (Standard deviation) of all indices in different boundary settings. The gradient background
color is based on the stability score ranging from 0 to 1, the darker the orange color is, the closer it is to 1.

Inter-city level analysis

Figure 5 shows the stability scores for each hotspot index and city boundary, with each table representing
all-day, work-hour and home-hour hotspots. Recall that each stability value is computed as the average of
all Spearman correlations between all pairs of combinations of spatial units and interpolation methods.
To measure that variance, each table also shows the standard deviation of the stability in parentheses.
Next, we describe the main outcomes, followed by an in-depth discussion in the next section. Based on
the Figure, we observe:

1) All hotspot indices are the most stable when cities are defined by their urban municipalities only
(PerMuni-U) with average correlations between different spatial unit and interpolation combinations
ranging from 0.62 to 0.86 - very strongly correlated - across methods. Hotspot indices are least stable
when cities are defined by their metropolitan area and considering both urban and rural regions (Metro-
UR, with stability values from 0.33 to 0.59). Generally, it is fair to say that all indices tend to be
more stable in settings that consider only urban areas and independent municipalities, rather than
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Figure 6. Spearman correlation coefficient Coe find=pPro X ,b=Metro-UR,j,k DEtWEEN €aCh pair of
combinations (C}, C}) for all-day permanent hotspots. The coefficient matrix is symmetric. The row mean is
the average of coefficients in each row, excluding the values on the diagonal. The row mean of j-th row shows
the average coefficients of combination C; correlated with other combinations.

whole metropolitan areas. As a result, and whenever possible, city boundaries that consider only urban
municipalities should be favored in inter-city analyses since the ranking of cities will likely remain stable
and comparisons with other urban features - e.g., crime - will be robust thus avoiding conflicting results.

2) Scale of hotspot indices (NHS, AHS) and urban sprawl indices (COMP, MCOMP) are the most
stable. For 3 out of 4 city boundary settings, NHS, COMP and MCOMP are between strongly and
very strongly stable. Therefore, compared to the compactness indices, researchers have more freedom
to choose the boundary settings and interpolation methods for inter-city level comparisons that are based
on scale of hotspots and degree of urban sprawl. This means that under the same city boundary setting,
comparison among cities in terms of these two indices or correlation with other factors using them are
less likely to produce conflicting findings across combinations of types of spatial units and interpolation
methods. Finding (1) revealed that PerMuni-U produces the most stable indices across types. However,
the second most stable boundary setting for scale of hotspots and urban sprawl is different. Scale of
hotspots’ second best setting is Metro-U while for urban sprawl is PerMuni-UR. For urban sprawl,
the difference between the stability in PerMuni-UR and in PerMuni-U is small. Therefore, as long as
researchers are using PerMuni-based settings, whether or not to include rural areas does not have a large
impact in terms of stability.

3) Compactness indices (COHE, PROX, NMI and NMMI) are the least stable indices. When making
comparisons at the inter-city level in terms of compactness indices, researchers should first pay attention
to the boundary settings because compactness indices are strongly stable only in the PerMuni-U setting
and moderate to weakly stable in the other three settings. When PerMuni-U setting is undesired, e.g., rural
areas need to be incorporated, our proposed method allows researchers to explore in depth the relationship
between spatial units, interpolation methods and stability for a selected city boundary; to then choose
the most stable combination within the unstable setting. For example, Figure 6 shows the Spearman
correlations among the different combinations for the PROX index in the Metro-UR boundary setting.
We can observe that, in general, the stability across all combinations is low. However, if researchers need
to use a Metro-based setting, the (G, Pop) combination tends to have the largest average correlations
(0.49) and thus, the largest stability which would make it the top candidate combination to use when
extracting hotspots at both urban and rural scales. Similar results are observed for COHE, NMI and
NMMI.
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Metro Metro PerMuni PerMuni Metro Metro PerMuni PerMuni
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NMMI 0.30 (0.11) 0.33(0.14) 0.35(0.15) 0.39 (0.15 NMMI 037 (0.15) 0.39(0.17) 0.39 (0.17) 0.44 (0.16)

(a) 24-hour vector (b) 4-hour-bin vector

Figure 7. Stability (Standard deviation) of all indices in different boundary settings. The coefficients in (a) are
computed using 24-hour vector of indices and in (b) are computed using 4-hour-bin vector. The gradient
background color is based on the stability score ranging from 0 to 1, the darker the orange color is, the closer it
is to 1.

4) In most cases, the stability for different indices and boundary settings is similar among all-day,
work-hour and home-hour permanent hotspots. But the home-hour stability in Metro-UR settings for
COHE, PROX and NMI is consistently smaller than all-day and work-hour.

Intra-city level analysis

The stability scores at the intra-city level for each hotspot index and across boundary settings are shown in
Figure 7(a). Standard deviation values for each stability score - representing the spread of the correlations
among different combinations of spatial units and interpolation methods - are also shown. From the
Figure, we can observe that:

1) Hotspot scale and urban sprawl indices are more stable in Metro-based settings, while urban
compactness indices highest stability is achieved when using municipalities to define city boundaries.
Nevertheless, the impact of boundary settings is small for urban compactness indices. Based on these
findings, researchers could favour one type of indices versus others depending on the boundary settings
of interest, which would in turn produce more robust indices to measure hotspot rankings over time for a
given city.

2) The highest stability score is achieved by urban sprawl indices (COMP and MCOMP) under Metro-
UR and Metro-U boundary settings. This is different from the inter-city level stability analyses where
the best score was achieved with PerMuni-based settings. However, even the highest stability is only
moderately stable. AHS also has moderate stability under Metro-UR and Metro-U boundary settings.
The rest indices in all settings are weakly stable, much lower than the stability scores at the inter-city
level, indicating that a change in the boundary or spatial unit choice could produce widely different
results.

3) The intra-city stability scores per index are computed extracting permanent hourly hotspots i.e.,
hotspots that are considered as such throughout the 24 hours. As a result, the low stability scores could
be potentially due to the stringent definition of hotspot. To assess that, we grouped the 24 hours into
6 bins - each bin is a 4-hour-bin - and computed the hotspot indices again. In this case, the Spearman
correlation was computed between two 6-bin vectors of coefficients - instead of the previous 24-hour
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Figure 8. Spearman correlation coefficients Coe fini=n 3,55,k Detween each pair of combinations (C,C)
under four different boundary settings. The coefficient matrix is symmetric whose lower triangular part is
omitted.

vectors. Figure 7(b) shows that although the stability scores increase, except for the COMP index in the
Metro-based setting, they are still mostly weakly stable.

Finally, it is important to mention that although the index stability scores at the intra-city scale are on
average low, some cities do have much higher stability scores than others. This finding might be indicating
that, unlike inter-city scales, intra-city hotspots’ stability might depend on other types of cultural or social
trends not studied in this paper.

Discussion

In this section, we explore potential reasons behind the stability findings described in the previous section.

Stability of hotspot scale indices (NHS and AHS) at the inter-city level

As explained in the previous section, hotspot scale indices (NHS and AHS) are more stable when city
boundaries are defined using only urban municipalities. We posit that this might be due to the fact that
rural areas, which generally have smaller footfall, are dramatically changing the Lorenz curves and, as
a result, the scale of the hotspots computed. We will now analyze in depth a few case examples that are
representative of the global trends observed in our analyses. Figure 8(a) shows the Spearman correlation
coefficients for the NHS index across all the combinations of spatial unit and interpolation methods per
each of the four boundary settings. We can observe that combinations (G, Uni) and (G, Idw) are weakly
or even not correlated with other methods in the Metro-UR causing the low stability score. Changing
to other boundary settings, such as excluding the rural areas, all the coefficients involving methods (G,
Uni) and (G, Idw) have a large increase and as a result NHS becomes more stable in Metro-U setting.
Therefore, we will compare the NHS computed based on combinations (G, Idw) and (G, Pop) to explore
what might cause the unstability or dissimilarity in the cities ranking.

Figure 9(a) and 9(b) shows the comparison between Metro-UR and Metro-U settings for city 34
(Puebla-Tlaxcala Metropolitan Area) and city 39 (Rioverde-Ciudad Ferndndez Metropolitan Area). Each
plot represents the Lorenz curve used to compute NHS,, based on a combination C' = (¢, ) of type of
spatial units ¢ and interpolation method ¢ in city a. We can observe that the more rural areas a city has, the
more heavily the shape of Lorenz curve is changed by different combinations C', which causes variations
in the number of hotspots identified. For example, Figure 9(a) shows that under the Metro-UR setting,
NHS34 = 200 and for NHS39 = 34 based on the combination (G, Pop), which means that the ranking of
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Figure 9. Lonrenz curves for loubar-based hotspots detection in city 34 and 39 in different boundary settings.
The x-axis is rescaled to the number of spatial units to better explain the difference in NHS. Combination (G,
Pop) and (G, Idw) are shown for comparison. City 34 has 70% of rural areas and 39 municipalities with various
percentage of rural areas while city 39 has 99% of rural areas and 2 municipalities both with more than 95% of
rural areas.

city 34 is higher than 39. Changing to the combination (G, Idw), NHS34 decreases to 138 but NHS3g
increases to 466 showing that the ranking of cities 34 and 39 has reversed. This is caused by the fact that
city 39 has more rural areas (99%) than city 34 (70%), and the Lorenz curve for city 39 is impacted more
(much more closer to the diagonal) by changing from (G, Pop) to (G, Idw) than the curve for city 34.

On the other hand, the spatial units in the rural areas are not considered in the hotspots detection under
the Metro-U setting. For example, the number of grids considered in city 39 in Metro-U setting is about
250, much smaller than in Metro-UR setting which is about 14, 500. The impact brought by the variation
in percentage of rural areas is mitigated by focusing on urban areas only in the Metro-U setting i.e., the
change in the Lonrenz curve and change in NHS from (G, Pop) to (G,Idw) is smaller and more consistent
in both cities. Changing from (G, Pop) to the (G, Idw), NHS3, increases from 196 to 205 and NHS3g
increases from 27 to 56. Therefore the ranking of both cities are better preserved between these two
combinations.

Next, we shift our focus to the Permuni-UR setting. In PerMuni-based settings hotspots are detected
per municipality. Therefore, the Lorenz curves might be affected by the percentage of rural areas in each
municipality. City 34 as a whole metropolitan area has 70% rural areas, but it has 39 municipalities with
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Figure 10. Permanent hotspots detected by combinations (CT, Uni) (Vor, Pop) for city 25 and 46.

various percentages of rural areas from 1% to 92%. Four example municipalities are shown in Figure
9(c). City 39 has 2 municipalities, both of which have similar percentages of rural areas as city 39 as
a whole, shown in Figure 9(d). We observe that for municipalities with high percentage of rural areas
e.g., municipality 22163, 21074, 24024, 24011 in Figure 9(c) and 9(d), the Lorenz curves are also heavily
impacted by changing from (G, Pop) to (G, Idw). For municipalities with lower percentage of rural areas
e.g., municipality 21114, 21041 in Figure 9(c), the Lorenz curves are less impacted. As a result, changing
from (G, Pop) to (G, Idw), the NHS3,4 changes from 905 to 3663 and the NHS39 changes from 60 to 503.
Although city 34 still has a smaller change in NHS (increased 3 times) than city 39 (increased 7.4 times),
the ranking between them is preserved. Therefore the stability of NHS in Permuni-UR is better than in
Metro-UR.

Stability of urban sprawl indices (COMP and MCOMP) at the inter-city level

As discussed in the previous section, urban sprawl indices computed with PerMuni-based boundary
settings appear to be more stable than Metro-based ones. One of the possible reasons might be the
different ways in which the population of a metropolitan area can be distributed across municipalities.
For example, some metropolitan areas have a dominant urban core with the majority of human activities,
while in other metropolitan areas there might be municipalities acting as sub-centers with similar levels
of activity as their urban cores.

Take city 25 (Morelia Metropolitan Area) and 46 (Tlaxcala-Apizaco Metropolitan Area) as examples
(Figure 10). Both city 25 and 46 have multiple municipalities and each municipality has an urban area.
But in city 25, the urban core is dominating, that is, the population of city 25 is mostly concentrated
in one core urban region e.g., (CT, Pop) and (Vor, Pop) in Metro-UR setting in Figure 10(a). While in
city 46, the location of the hotspots varies. With the combination (C7, Pop) in Metro-UR, the permanent
hotspots concentrate in the left-bottom corner (Figure 10(b)), just like city 25. But with the combination
(Vor, Pop) in Metro-UR, permanent hotspots in other municipalities are detected thus increasing the
value of the COMP index (Figure 10(b)). As a result, since different metropolitan areas have different
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Figure 11. Spearman correlation coefficient C'oe fina—conr p,s,j,x between each pair of between each pair of
combinations (C;,C%) under four boundary settings. The coefficient matrix is symmetric whose lower triangular
part is omitted.

distributions of population over multiple municipalities, hotspots indices computed over metropolitan-
based settings are not as stable. On the other hand, detecting hotspots in the municipality-based settings
is more stable because the permanent hotspots are local to each municipality and overall the hotspots
spread over multiple municipalities (see the second row in Figure 10(a) and 10(b)). And because COMP
is normalized by the square-root of city’s geographical area, the distance between hotspots spreading over
the city is normalized. Therefore variances in the population distribution bring less instability to COMP
indices across spatial units and interpolation methods.

Rural areas also appear to play a role in index stability. Figure 11 shows the correlation coefficients
for each pair of spatial unit and interpolation method combination across all boundary settings for the
COMP index. We can observe that combinations (Vor, Uni) and (Vor, Pop) are the least correlated with
other combinations, especially in settings including rural areas. When considering rural areas, the Voronoi
polygons can cover large regions e.g., the plot of (Vor, Pop) using the Metro-UR setting in Figure 10(a)
and 10(b), as the cell towers tend to be sparse in rural areas. Since urban sprawl indices are computed
based on the distance among centroids of polygons, these large Voronoi polygons drag the centroids away
from dense population areas; and since the sizes of the Voronoi polygons are not homogeneous across
different metropolitan areas, the inclusion of rural areas brings in high instability to hotspot urban sprwal
indices.

Stability of urban compactness indices (COHE, PROX, NMI and NMMI) at the
inter-city level

Urban compactness indices, similarly to urban sprawl, are computed using the distance between the
detected hotspots. Therefore, these indices are subject to the same instability issues due to the various
ways in which population and footfall can be distributed across municipalities, and to the varying shapes
that Voronoi polygons might have in rural areas. Comparing Figures 11 and 12 we can also observe that
the correlation between Vor-based and other spatial combinations is much worse for urban compactness
indices than for urban sprawl indices. This is because compactness indices measure the compactness of
the shape of hotspots, and the varying nature of the Voronoi polygons causes the Vor-based combinations
to be weakly to no correlated with other combinations when the rural areas are considered.
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Figure 12. Spearman correlation coefficient C'oe fina—prrox,s,5,x between each pair of between each pair of
combinations (C;,C%) under four boundary settings. The coefficient matrix is symmetric whose lower triangular
part is omitted.

Difference of stability between home-hour and work-hour permanent hotspots at
inter-city level

There exists little difference in the stability of hotspot indices computed for home- and work-hour periods
across different city boundary settings. Nevertheless, it is worth noting that the stability scores for
COHE, PROX and NMI computed for home-hour periods are slightly more unstable than their work-
hour counterpart, especially in the Metro-UR setting. We argue that this might be due to the fact that for
some cities home locations are more spatially scattered, possibly including the outskirts where CT and
Vor polygons tend to be larger when compared to work locations in downtown areas that tend to have
smaller CT and Voronoi polygons. Thus, these varying area sizes in home location polygons might be
increasing the instability of the indices. See Figure 13 for an example of this setting with city 10 (Tuxtla
Gutiérrez Metropolitan Area), city 30 (Tepic Metropolitan Area) and city 32 (Oaxaca Metropolitan Area).
The home-hour permanent hotspots are more scattered than the work-hour permanent hotspots. Using
(G, Pop), a few small grids away from the core area in city 30 and 32 are considered as permanent
hotspots. But using (Vor, Pop), the Voronoi polygons away from the core area have large variation in size.
The variation in size would have a huge impact on the covered geographic area and subsequently on the
equal-area circle considered in the compactness indices. Therefore, COHE, PROX and NMI have slightly
lower stability in home-hour period.

Conclusions

The rich spatio-temporal information provided by CDR data has provided great potential for studying
human mobility dynamics in urban environments. A bulk of the literature has used CDR data to study
the relationship between human dynamics - modelled through hotspot areas in cities - and various urban
characteristics, such as spatial structure, transportation efficiency and energy consumption. However,
most of these studies are based on ad-hoc selections of city boundaries and spatial units.

In this paper, we conduct a systematic analysis of the stability of various hotspot indices at both inter-
city and intra-city levels. We have found that at the inter-city level, the urban municipality boundary is
the best setting to obtain stable and robust city ranking results. Indices for scale of hotspots and degree
of urban sprawl are strongly stable across all city boundary settings. Therefore, when a particular city
boundary setting is desired, NHS, AHS, COMP and MCOMP are good indices to work with. If the
compactness family of indices (COHE, PROX, NMI and NMMI) are of interest, it is better to use the
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Figure 13. Permanent hotspots detected by methods (CT, Pop), (G, Pop), (Vor, Pop) for city 10, city 30 and
city 32 in work and home hours under boundary setting b=Metro-UR

municipalities with urban and rural areas (PerMuni-UR setting). If other city boundaries are required,
we recommend using the (G, Pop) interpolating method as this method tends to be most correlated with
other methods in all settings.

For intra-city level, the stability of indices are mostly weakly stable. Only the degree of urban sprawl
(COMP and MCOMP) in Metro-based settings have moderate stability. The stability of indices in
different cities has large variation, meaning some indices can be very strongly stable across interpolation
methods in some cities but not stable at all in other cities. We have not find any index or boundary
setting that would work well across cities. Thus it is vital for researchers to use consistent type of spatial
units and interpolation methods. We also intend to explore the characteristics of cities that contribute the
stability of indices in the future work.
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