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Abstract—Ubiquitous computing technologies enable capturing
large amounts of human behavioral data. The digital footprints
computed from these datasets provide information for the study of
social dynamics, including social networks and mobility patterns,
key elements for the effective modeling of virus spreading.
Traditional epidemiologic models do not consider individual
information and hence have limited ability to capture the inherent
complexity of the disease spreading process. In this paper we
propose an agent-based system that uses social interactions and
individual mobility patterns extracted from call detail re cords
to accurately model virus spreading. The proposed approachis
applied to study the 2009 H1N1 outbreak in Mexico.

I. I NTRODUCTION

Traditional epidemiological approaches base their solutions
on using differential equations that divide the population into
subgroups based on socio-economic and demographic charac-
teristics. Although these models fail to capture the complexity
and individuality of human behavior, they have been extremely
successful in guiding and designing public health policies. The
recent adoption of agent-based modeling (ABM) approaches has
allowed to capture individual human behavior and its inherent
fuzziness by representing every person as a software agent.

The adoption of ubiquitous computing technologies by very
large portions of the population (e.g. GPS devices, ubiquitous
cellular networks or geolocated services) has enabled capturing
large scale human behavioral data. These datasets contain in-
formation that is critical to accurately model the spread of a
virus, such as human mobility patterns or the social network
characteristics of each individual

In this paper, we propose an ABM system designed to simulate
virus spreading using agents that are characterized by their in-
dividual mobility patterns and social networks as extracted from
cell phone records. We carry out simulations with data collected
during the 2009 Mexican H1N1 outbreak and measure the impact
that government calls had on the mobility of individuals andthe
subsequent effect on the spread of the H1N1 virus. An extended
description of our system and its evaluation using the 2009 H1N1
outbreak can be found in [1].

We have used call detail records(CDR) to compute: (1) a
mobility user model and (2) a social user model that identifies
each agent’s social network. This approach of capturing and
modeling agent behavior from CDRs sets our work apart from
others because: (1) we model agents from real individual data
and not from census or surveys; and (2) we capture behavioral
adaptations to the spread of the disease.

II. ABM OF V IRUS SPREADING USINGCDRS

We propose an ABM architecture with two main components:
(1) a set of agents that are modeled using the information
contained in call detail records; and (2) a discrete event simulator
(DES) that simulates the virus propagation over time based on
the agents’ models.

Agent Generation
We define the behavior of each agent with three models: (1) a

mobility model extracted from CDR data; (2) a social network
model computed from CDR data; and (3) a disease model that
characterizes the progression of the disease through its various
states in each agent.

The mobility model provides the position (at the BTS level)
where the agent is at each moment in time. This model is used
by the event simulation process to predict the location of each
agent at each simulation step. We propose a mobility model that
divides each day into a setS of i non-overlapping equal-length
time slots. The mobility model of agentn, Mn, is defined as:
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where B is the number of BTS towers that give coverage
to a geographic area; and pwday,i,j

n and pwend,i,j
n denote the

probability that agent n may be found at BTS j in timeslot i
during a weekday or weekend, respectively. Given a CDR dataset,
the mobility model is built by associating with each time slot i
the set of BTSs where each person has beenobserved during
weekdays or weekends during the period of time under study.

Note that each individual might be assigned to more than one
BTS in a specific time slot i. In this case, the event simulator
assigns the position of the tower with the highest probability,
i.e., the BTS that the individual has used the most over the
training period. Since people tend to show monotonic behaviors,
an average person typically has very few BTS towers in his/her
mobility model.

We compute the social network of an agent as the set of
individuals with whom there was at least one reciprocal contact
during the time period under study:
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where Swday
n is the social network during the weekdays and

Swends
n the social network during the weekends. Given the social

networks of an agent, we assume that the probability of being
physically close to another agent will be higher if that other
agent is part of its social network. To model physical proximity
within a BTS coverage area we define two probabilities: (1)p1

is the probability that two agents that are in the same BTS at
the same time of the simulation and are part of the same social
network are physically close enough for the virus to be possibly
transmitted; and (2) p2 the probability that two agents that are
in the same BTS and arenot in the same social network at the
same moment in time are physically close for the virus to be
possibly transmitted.

The disease model captures the progression of the disease in
each agent. We follow a similar approach to that of Barretet al.
[2] and define a disease model that is composed of two parts: the
between hosts transmission model and thewithin host progression
model. In Figure 1 we observe that thebetween hosts transmission
model happens at a probabilitypi and represents the probability
that an agent goes from Susceptible to Exposed. Thewithin host
model represents the evolution from Exposed to Infective ina
given period of time ǫ, and from Infected to Removed in period
of time β.

Fig. 1. Disease Model composed of Between hosts and Within hosts models.

Discrete Event Simulator
The Discrete Event Simulator (DES) simulates the evolutionof

the epidemic spreading for a set of agents over a specific period
of time. To bootstrap the epidemic spreading, we assume thatan
initial agent is Infected and starts the transmission. Specifically,
the DES does the following consecutive tasks: (1) It identifies
the geographical area (BTS) where each agent is located using
the mobility model; (2) it identifies the geographical areaswhere
there is, at least, one Infective agent; (3) for each Infective agent,
it takes all the Susceptible agents of his social network that are
located in the same geographical area (BTS coverage) and applies
probability p1 that they will be physically close for the virus
to be transmitted; (4) for each Infective agent and the rest of
Susceptible agents included in its geographical area (not part of
its social network), it applies the probability p2 that they will be
physically close for the virus to be transmitted; (5) for theset of
agents physically close obtained from steps (3) and (4), it applies
the between hosts transmission probability to go from Susceptible
to Exposed; (6) for the agents that are already in the Exposedor
Infective state of the disease model, it applies the corresponding
progression; and at last (7) it removes from the simulation all
agents that have reached the Removed state.

III. E XPERIMENTS: THE CASE OFH1N1 IN MEXICO

In case of a pandemic, the World Health Organization (WHO)
recommends authoritative bodies to consider the suspension of
activities in educational, government and business units as a

measure to reduce the transmission of the disease. The actions
implemented by the Mexican government to control the H1N1
flu outbreak of April 2009 constitute an illustrative example. The
actions consisted in three stages: (a) a medical alert issued on
Thursday, April 16th, which was triggered by the diagnosis of
the first H1N1 flu cases; followed by (b) the closing of schoolsand
universities, enacted from Monday April 27th through Thursday,
April 30th; and (c) the suspension of all non essential activities,
implemented from Friday, May 1st to Tuesday, May 5th.

Period Date Range Description
preflu 1/1 – 16/4 Period before any H1N1 case has been dis-

covered. Agents will move largely unaffected
and showing their usual mobility patterns.

alert 17/4 – 26/4 April 16th - Diagnosis of H1N1 cases and
medical alert triggered the following day.
People may be reacting to the news and
modify their usual mobility patterns.

closed 27/4 – 31/4 Schools and Universities closed. Normal be-
havior disrupted as people change their usual
mobility patterns.

shutdown 1/5 – 5/5 Closure of all non-essential activities.
reopened 6/5 – 31/5 Restrictions lifted.

TABLE I. T IME PERIODS OF STUDY.

Experimental Setting
In order to examine the impact of government restrictions

we evaluate changes in the mobility and disease models in five
chronological periods. Table I presents the timeline understudy.
We generate agents (with corresponding mobility and social
models) for each of these time periods. In order to measure
behavioral changes, we define two scenarios: abaseline scenario
and an intervention scenario. Thebaseline scenario is built using
the mobility and social models obtained during the pre-flu period,
when individuals show normal – not affected by medical alerts –
mobility behavior. The intervention scenario considers the models
that are built with data from the alert, closed, shutdown and
reopened periods. In this case, depending on the moment of the
simulation, the DES will jump from one set of models to the
next. The evaluation is done by comparing the results obtained by
both scenarios. Due to the inherent randomness of the spreading
process we run each scenario 10 times and average the results.

Generation of Agents
We collected CDRs from January1

st to May 31
st of 2009 of

one of the most affected Mexican cities. The dataset contains 1
billion CDRs and 2.4 million unique cell phone numbers. Eachcell
phone number is associated with one agent and we compute the
mobility, social and disease models for both thebaseline and the
intervention scenarios. The mobility models are computed with a
granularity of one hour. Following Songet al. [3], we only consider
the agents that (1) are assigned to at least two BTSs; (2) have
a minimum average calling rate of0.25 calls/hour; and (3) have
at least 20% of the hourly time slots filled. These requirements
narrow down the final number of agents to25, 000.

We also build the social network models for thebaseline and
the intervention scenarios. As part of these models, we needed to
define values for the contact probabilitiesp1 and p2. In order to
compute their values, we make use of the work by Cruz-Pacheco
et al. [4], where the authors examined the effect of the government
intervention measures on the epidemic spread using SIR. Details
can be found in [1]. Our search determined that the best values
were p1 = 0.9 and p2 = 0.1.
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To build each agent’s disease model, we use the parameters re-
ported in the literature related to the H1N1 outbreak: R0 = 1.75
(Estimated Reproduction number), ǫ = 26.4−1 hours (Expected
duration latent period), β = 60

−1 hours, (Expected duration
infectious period) and ρ = 34

−1 hours (Expected time before
infecting another agent). We initialize our simulations with one
infected agent on April 17th (the first day a case was detected)
[4] and run the simulation for 30 days.

Analysis of the Results

In this Section, we compare the results of theintervention
scenario with the baseline scenario from a mobility perspective
and from a disease model perspective.

Agent Mobility: In order to measure the changes in mobility
due to government mandates, we computed for each scenario the
percentage of agents that moved from one BTS coverage area
to another one at each step of the simulation (1 step = 1 hour).
Figure 2 shows the results.

Both the baseline and the intervention plots show similar
cyclical changes. However, there are a number of important
differences. There is a significant decrease in mobility on April
27

th, precisely when thealert period finishes and theclose period
starts. This decrease in mobility continues until the beginning of
the shutdown period. On May 1

st and throughout the shutdown
period, there is an even larger decrease in mobility (< 30%) that
lasts until all restrictions are lifted on May 6

th. To sum up, during
the intervention scenario there is a reduction in the mobility of
the agents of 10% during the alert period and of up to 30%
during the closing and shutdown periods, when compared to the
baseline. These differences in the agents’ mobility disappear once
the reopen period starts (from May 6

th onwards).

Fig. 2. Percentage of agents that move between BTSs for theintervention
andbaselinescenarios. The temporal granularity is1 hour.

Disease Transmission:In this section we study the evolution
of the disease focusing on the number of susceptible and infected
agents in theintervention and baseline simulations.

Figure 3 displays the percentage of the population that is in
the susceptible stage of the disease model for a specific dateand
time. Results are shown for both theintervention and the baseline
scenarios. We observe that at the beginning of the simulation
all agents are susceptible of being infected. As time passes, the
evolution of susceptible agents is described by a sigmoid function.
The number of susceptible agents decreases faster in thebaseline
scenario, i.e. the number of infected agents grows faster than
in the intervention scenario. This result supports the hypothesis
that the government measures taken during theintervention
scenario had an impact on the agents’ mobility patterns and hence

managed to reduce the number of infected agents when compared
to the baseline scenario. The largest difference between both
sigmoid functions takes place during the peak of the epidemic,
with approximately a 10% less of susceptible agents in the
intervention scenario.

Figure 4 shows the percentage of infected agents during the
simulation for both scenarios. We observe that the peak of the
epidemic in the intervention scenario happenslater in time than
in the baseline, and has asmaller absolute value. The reduction
in mobility and the closure of public buildings delayed the peak
of the epidemic by 40 hours. Also, in our simulations, the total
number of infected agents was reduced by10% in the peak of
the epidemic in the intervention scenario when compared to the
baseline scenario. These results are in agreement with the ones
reported in [4].

Fig. 3. Fraction of susceptible agents in the population over time. These
curves are an average of all simulation runs.

Fig. 4. Fraction of infected agents over time. These curves are an average
of all simulation runs.
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