
Abstract 

Understanding the spread of information in a social network has 

proven useful in numerous areas, with viral marketing and 

epidimeology being two of the more prominent ones. Word-of-

mouth algorithms are one class of algorithms that have been 

developed to model how information is verbally spread in a social 

network. However, two significant  limitations of current word-of-

mouth algorithms are their inability to: (1) capture when 

communication or contacts take place and (2) explain where the 

information possessed by each individual came from. In this paper, 

we present a novel algorithm that addresses these drawbacks by 

considering the temporality of communication and by tracing the 

spread of influence within a social network. The traces of influence 

prove useful for the identification of the most important 

individuals in a social network and for inferring causality.  By 

applying the proposed algorithm to a large set of call detail records 

(CDRs), we are able to validate the proposed algorithm via 

simulations of word-of-mouth traces. Our two main findings are 

that (1) influence is better understood when temporality is added to 

the model and (2) the spread of information and influence in a 

network has several statistical invariants. 

1 Introduction and Motivation 

Word-of-mouth (WoM) or information diffusion algorithms 

first appeared in the social sciences [1] to model social in-

teraction. This family of algorithms has been successfully 

used in a variety of areas, including viral marketing [2], 

epidemiology, and churn prediction [3]. In typical WoM 

algorithms [1][3], inferring the structure of the network and 

modeling the diffusion of information are considered two 

different problems that are solved using different algo-

rithms: first, a social network is constructed, followed by an 

information spreading algorithm, such that the order with 

which nodes interchange information or influence is not 

considered. However, in the case of viral spread (e.g. mar-

keting, human or computer viruses, etc.), when the interac-

tions take place is very important, because an individual 

will propagate information only if he or she has previously 

received it [4]. Also, in most of the applications where 

WoM algorithms are applied it is relevant to know who is 

responsible for each node’s activation, i.e. the causality of 

the influence. The algorithm proposed in this paper models 

not only the importance of the nodes of a network, but also 

the dynamic aspects of information spread.  

2 Traceable Word-of-mouth Algorithm 

The set of N nodes of a network C is defined by 

C={c1,…,cN} or C={c(1),…,c(N)}. Each node C(i) has an 

associated data structure that specifies its initial influence (if 

any), denoted by Ti or T(i) i=1...N. The algorithm uses two 

data inputs: (1) a set of interactions between nodes and (2) a 

set of active nodes. The set of interactions is defined by a set 

of time-ordered vectors k=1…M:  

(srck,dstk,lenk)/srck ∈ C,dstk ∈ C,lenk ∈ ℜ
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where, srck and dstk are the source and destination nodes of 

interaction k, respectively; and lenk is the length of the inter-

action k, typically measured in seconds.  

Initially, nodes are classified into two sets: (1) active nodes, 

with Ti={(β,{})}, and where β represents their initial influ-

ence; and (2) inactive nodes. The output of the algorithm 

consists of Ti, i=1...N, where each Ti is updated to represent 

each node’s influence and its trace according to the set of 

previous interactions. After a set of interactions has taken 

place, Ti is defined as a time-sorted list of influence tuples: 
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The tuple represents an interaction in which a load of influ-

ence was transmitted from the source node i to the destina-

tion node j. The path represents how that influence was 

transmitted: 
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Where )3(),2( j
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i cc … are the intermediate nodes that have 

transferred the influence from the active_node to the ds 

node (the set of interactions is ordered in reverse time). The 

first element of the path, dst, can be referred to as pathi
j
(1) 

while the last element can be referenced as pathi
j
(|pathi

j
|), 

where |χ| indicates the length of vector χ . The total influ-

ence accumulated by node i, act(c(i)), is defined as: 
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2.1 Algorithm 

Figure 1 presents the proposed algorithm to compute the 

evolution of Tn. With each interaction, the source nodes that 

have an influence greater that 0 transfer influence to the 

destination nodes, according to the influence_transfer func-

tion, annotating the path of the transfer in the process. 

Source nodes do not lose influence in each interaction and 

destination nodes will only receive influence until their ac-

cumulated influence equals β.  

 

 

 

 

 

 

 
 
 

Figure 1. Algorithm to compute the trace of influence. 

 

The two parameters that need to be defined in the proposed 

algorithm are β and the influence_transfer function. A typi-

cal value for β used in WoM algorithms is 1 [3]. The influ-

ence_transfer function is a function that considers the length 

of the interaction between the source node and the destina-

tion node and transfers a proportional amount of influence. 

We have experimented with two functions: a piecewise-

linear function and a Gompertz [5] function. 

3. Characterization of Influence  

We propose four concepts to characterize the spread of in-

fluence: (1) primary source of influence (PSI); (2) direct 

source of influence (DSI); (3) intermediary sources of influ-

ence (ISI) and (4) influence paths (IP). 

3.1 Primary Sources of Influence (PSI) 

The primary sources of influence of node A, PSI(A), are the 

set of nodes where the energy received by A originated 

from, indicating for each originating node the total amount 

of energy transferred. Formally, they are defined as: 
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where S stores the originating nodes, which will always be a 

subset of the active nodes. The originating nodes of influ-

ence of a node A are the last elements of each path of TA-- 

see Eq. 4. The union set operator only includes the nodes 

once, in case of repetitions. The energy transferred by each 

originating node Si is obtained as the sum of the loads of 

each path of TA where the last element is Si. PSI can also be 

defined globally for all the nodes of a network. The Global 

Primary Sources of Influence of a network C, GPSI(C), is 

defined as the set of nodes where the energy received by any 

node of the network originated from. Formally:  
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3.2 Direct Sources of Influence (DSI) 

The direct sources of influence of node A, DSI(A), are the 

set of nodes that directly transmitted energy to A (i.e., in one 

hop), indicating for each direct node the total amount of 

energy transferred. DSI can also be defined globally for all 

the nodes of a network C with the function Global Direct 

Sources of Influence, GDSI(C.) 

3.3 Intermediary Sources of Influence (ISI) 

The intermediary sources of influence of node A, ISI(A), are 

the set of nodes used to transmit the influence from its ori-

gin to A, excluding the source of the influence and the direct 

influence node, with the total amount of energy transmitted 

by each intermediary node. The ISI concept can also be de-

fined globally for all the nodes of a network C with the 

function Global Intermediary Sources of Influence, GISI(C). 

3.4 Influence Paths (IP) 

Influence paths (IP) are defined for a network C as the set of 

paths used to transmit influence from active nodes to desti-

nation nodes, with the value of total influence transmitted. A 

global Length Path (LP) measure can be defined as the 

length of each one of the paths in IP(C), where the length is 

given in number of nodes, i.e. LP quantifies the number of 

nodes that the influence has to travel from the activated 

node to the destination node. 

4. Methodology 

Two simulations were run in order to model how influece 

spreads using the CDR traces of 250,000 users over a six 

month period: (1) Experiment 1 (Exp1) considers 1% of 

randomly chosen activated nodes, uses the first month of the 

data and a linear influence transfer function; and (2) 

Experiment 2 (Exp2) considers that 5% of the nodes are 

activated, where the nodes are selected in this case using a 

random walk [9], uses a different month of data (the fourth 

month) and a Gompertz influence transfer function.  The 

proposed algorithm was run for each experiment, producing 

two sets of Ti. Next, we computed the correlation between 

the final level of energy in each node and the degree, 

frequency of calls and total duration of calls for the same 

node. In addition, we computed and plotted in a log-log 

scale the ranked GPSI, GDSI, GISI, IP and LP functions. 

5. Results 

Figure 1 presents the results for Exp1 and Exp2 for GPSI 

(similar graphs have been obtained for DSI, ISI and IP). The 

 for k=1…M do 

       if (act(srck)=0 or act(dstk)> β) 
           next interaction (k=k+1) 

       else  
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heads of the distributions represent nodes that have a lot of 

influence, while the tails include nodes that play a minor 

role in spreading the influence. The y-axis represents the 

total energy.   

Correlation Coefficients 

Table 1 presents the correlation coefficients between the 

final level of influence of each node in Exp1 and Exp2 and: 

(1) degree, (2) frequency of calls, (3) total duration of the 

calls and (4) multiple linear regression considering degree, 

frequency and duration of calls, where we report the coeffi-

cient of determination.  

 
Table I. Correlation between influence and degree, frequency, call 

duration and their combination for the first and second experiment. 

 Degree Frequency Duration MLR 

Experiment 1 0.24 0.42 0.60 0.60 

Experiment 2 0.24 0.24 0.29 0.30 

 

Note that duration is the variable that best justifies the influ-

ence received by a node, as much as considering the three 

parameters together via the MLR. This result is expected 

due to the role played by duration in the influence_transfer 

function of our model. However, duration can only express 

as much as 30% of variation in Exp2 and 60% in Exp1, 

which implies that the rest of the variation is caused by 

other factors (e.g. order of interactions, temporality, nature 

of the link between each node, nature of the node, etc.). Our 

results strongly suggest that there is more to the spreading 

of influence than what is captured by the standard –static– 

metrics such as degree, frequency and call duration. 

Log-log Rank Plots 

In the plots produced by both experiments, it can be ob-

served that the behavior of the nodes does not significantly 

change when we vary the number of phone calls considered. 

The curves are basically the same, shifted up and to the right 

because of the increase in the total influence transmitted 

over time, but their statistical behavior remains the same. 

This does not mean that the nodes that are in the head of the 

distribution at 1 million interactions are still at the head of 

the distribution later on, but that the relative importance of 

the nodes that are in the head compared to those at the tail of 

the distribution remains constant. 

These plots are very valuable for identifying the importance 

of each node in the network. For example, GPSI orders the 

nodes where more energy originates from and GISI orders 

the nodes by the role they play in transferring energy. Iden-

tifying these nodes is fundamental for many social network 

applications (e.g., churn prediction, marketing, epidemics, 

etc.). Curves were fitted using power law and lognormal 

baselines. GPSI has in both experiments a lognormal distri-

bution. This could be an indication that the distribution of 

the originating influence is an invariant, independent of 

other factors. Similarly, LP, the length of the paths, has in 

both cases a power law distribution with similar parameters. 

This fact indicates that preferential attachment behavior 

might also hold true for the length of the traces that describe 

the influence received. Conversely, IP, the set of influence 

paths, has a lognormal distribution and exhibits similar be-

havior in both experiments. It is interesting to note that for 

Exp1 the maximum trace length is 20 and the average trace 

length is 1.28, whereas in Exp2 the maximum trace length is 

13 and the average path length is 1.6. Also, in both cases 

there seems to be an upper bound in the length of the path 

close to 20.  

 
 (a) 

 
(b) 

Figure 1. Rank plots (log-log) of Global primary source of influ-

ence, GPSI, for Exp1and (b) for Exp2 for 1 million calls, 2 million 

calls and the entire data set. 

 

In theory, the lengths of the paths could grow as new phone 

calls are made. However, this increase might not be very 

significant as the lognormal has small probability mass in 

the tail.  
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