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ABSTRACT

Traditionally, historical crimes and socioeconomic data have been
used to understand crime in cities and to build crime prediction
models. Nevertheless, the increasing availability of mobility data
from cell phones to location-based services, has introduced a new
family of mobility-based crime prediction models that exploit the
relation between mobility patterns and reported crime incidents.
One of the major concerns of using reported crime data is under-
reporting, which will bias the crime predictions. In this paper, we
propose a novel Bayesian Hierarchical model that utilizes domain
knowledge about biases in reported crime data to characterize and
enhance fairness and accuracy in mobility-based crime predictions.
An in-depth feature analysis reveals the influence that various fac-
tors might play in crime under-reporting and algorithmic fairness
for mobility-based crime predictors.
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« Human-centered computing — Ubiquitous and mobile com-
puting; - Computing methodologies — Learning in proba-
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1 INTRODUCTION

Historical crime data is of great importance to understand the sever-
ity of crimes in society. Countless reports, academic papers, books
and news articles rely on reported crime data [27, 38]. This data
can be used to, for example, evaluate the effects of programs and
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policies designed to prevent crime in a city [16]. Crime predic-
tion, on the other hand, is an important topic of research that uses
reported crime data to predict future occurrences. For example,
historical crime data has been used to predict hotspots so as to
assist patrol route planning [28]. Traditionally, historical crimes
and socioeconomic data have been used as input to build crime
prediction models at various geographical levels e.g., grids, cities,
municipalities [8, 27]. Nevertheless, due to the increasing availabil-
ity of mobility data such as geolocated social media and mobile
phone data, a large number of studies have explored the predictive
relationship between mobility patterns and reported crimes [3, 39].

There are various theories about the relationship between mobil-
ity and crime in urban environments. For example, the Opportunity
makes the Thief theory claims that the opportunity is the cause of
crime [10] i.e., the higher the presence of suitable targets such as
people and property, the more crimes could happen; and empirical
work has confirmed that theory, showing that there is a super-linear
relation between the daily floating population (number of people
that has been in a neighborhood) and incidence of property crimes
[7]. Mobility patterns not only trace the movement of people, but
can also characterize the dynamic spatial structure of the urban
environment by detecting urban dense areas, a.k.a. hotspots [23].
Urban spatial structure is a critical and well understood concept in
environmental criminology and urban quantitative geography, and
it has been shown to be correlated to crime incidents [5, 37].

One of the major concerns of using reported crime data in crime
prediction is data bias, especially when computational models -
built upon such data - could influence future resource allocation e.g.,
planning police patrol routes [28]. Data bias in this context can be
framed under algorithmic fairness whereby crime predictive models
can behave differently for disadvantaged groups such as low-income
or minorities due to over- or under-representation in the historical
crime data [21]. In fact, not all crimes are reported. Sometimes
the public does not report crimes that are considered minor [32];
and low-income has been related to higher under-reporting for
certain types of crimes [35]. In addition, not all reported crimes
end up recorded in the official crime statistics, a decision mostly
made by the police [26]. Police may decide not record a report as
a crime because of insufficient evidence and/or individual biases
[26]. Therefore, the reported crime data statistics that are used in
research will naturally be biased, reflecting partial crime incidents
mediated by community engagement, police resources and potential
police biases towards disadvantaged populations. Although a few
papers have looked into the identification of biases in predictive
policing tools that exclusively use historical crimes [24], there is no
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work in the analysis of biases for mobility-based crime prediction
models, and more generally, no work in mitigation strategies to
enhance fairness without sacrificing accuracy in crime prediction.

In this paper, we propose a Bayesian hierarchical model to iden-
tify and mitigate under-reporting issues that could lead to biases
and lack of fairness in mobility-based crime incident predictions
[29, 31]. Specifically, the predictive model uses mobility-based fea-
tures to infer the number of true crimes, i.e., the actual number of
crimes that will occur regardless of whether they will be reported;
and use domain knowledge of determinants for under-reporting
(e.g., poverty, unemployment rate) to model the reporting rate, i.e.,
the ratio of the number of reported crimes to true crimes. By dis-
tinguishing the number of true crimes and reporting rate from
the reported crime data, we will show that our model manages to
improve both the accuracy and fairness of the crime prediction. In
summary, the main contributions of this paper are:

1) A novel mobility-based crime prediction model that utilizes
domain knowledge about biases in reported crime data to improve
fairness and accuracy in mobility-based crime predictions. We frame
biases within the under-reporting phenomenon whereby the sta-
tistics used by the algorithm fail to cover all crimes that actually
happened.

2) An in depth analysis of the influence that various features
might play in crime under-reporting and algorithmic fairness for
mobility-based crime predictors.

2 RELATED WORK
2.1 Crime Prediction with Mobility Patterns

Historical crime data and socioeconomic data are often used in
crime prediction models [8]. For example, historical crime hotspots
can be used to assess the risk of future crimes [8, 28]. Mohler uses a
marked point process to model the dependency between gun crimes
and homicides for homicide prediction in cities [28]. Neural net-
works have also been utilized to model the spatio-temporal patterns
in historical crimes for future crime prediction [38]. In addition to
historical crimes, census data [20] and points of interest (POI) [39]
have also been used to enhance crime prediction. The proliferation
of human mobility data, such as mobile phone data, geo-located
social media, taxi pick-up/drop-off and check-ins, has allowed for
the use of mobility features to predict crime incidents. One of the
most common mobility feature used in crime prediction is footfall
defined as the number of individuals present in a given area at a
given time span. Various studies use footfall as a feature to predict
future crimes [3, 20]. Bogomolov et al. estimate footfall and pop-
ulation diversity such as gender and age from mobile phone data
and predict whether a regular grid cell will have a high or low level
of crimes in the following month [3]; while Kadar and Pletikosa
extracted footfall from check-ins, subway and taxi data, along with
other census and POI features, to predict the number of crimes for
a given census tract using tree-based machine learning models [20].
Footfall can be used to identify urban dense areas, a.k.a. hotspots.
Hotspots are important in the fields of environmental criminology
and urban quantitative geography because they can be used to char-
acterize the dynamic spatial structure of the urban environment,
which has been shown to play a role in crime incidence [5, 37]. In
addition to the volume of hotspots, urban spatial structure can be
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quantified via urban sprawl [36] and urban compactness [1]. In this
paper, we will focus on mobility-based crime prediction models that
exploit the predictive power of the dynamic hotspots and urban
spatial structures in cities by analyzing the relationship between
hotspots and crime incidents.

2.2 Under-reporting in Crimes Statistics

Concerns about under-reporting in crime data are highly related to
the production of the reports themselves. Although crime reporting
systems around the world vary a lot, in a simplified way, we can
identify two main phases: a crime first needs to be reported to the
police by an individual, and it then needs to be recorded as a crime
entry into the police database. When crimes are reported, around
80% of them are reported by victims or witnesses, while the police
on scene reports about 6% and the rest are reported by offenders,
alarm systems or officials other than police, among others [13, 18].
However, there are various reasons why the public might choose
not to report a crime. The crime being "too trivial/no loss" used to be
the most important reason, but recently "Police could do nothing"
has come on top [32]. After an incident is reported, the police
decides whether or not to record the incident as a crime event in
the database. Various factors can influence the police’ decision such
as insufficient evidence and/or individual biases [26] As a result,
under-reporting in crime is heavily impacted by social disparities.
For example, in Kensington, middle-class crime complaints are more
likely to be reported and accepted by the police (i.e., high reporting
rate and high recorded rate), while the reports from white working-
class tend to be rejected (low recorded rate) and racially-mixed
communities are less willing to report (low reporting rate) [13].

Therefore, it is critical to address the existing bias in reported
crime data so that crime predictions are fair across social groups.
Although the reporting and recording of crime incidents are two
different phases, in this study, we make no distinction between
them as it is almost impossible to obtain such information from
local police force. Instead, we simplify and quantify the under-
reporting issue of crimes as the reporting rate, which is the ratio of
the number of reported crimes in the police database to the number
of (unobserved) true crimes that have occurred. This simplification
is common in the literature [18].

2.3 Algorithmic Fairness

There exists a plethora of computational algorithms making deci-
sions with high societal impact such as loan requests, crime pre-
diction or criminal sentencing. As a result, algorithmic fairness
or the design of algorithms that treat social groups similarly, be-
comes a critical component of any predictive approach. Algorithmic
fairness, especially the most commonly used notion of group or
statistical fairness, is based on the notion of protected or sensitive
attributes, such as gender and race (minority and non-minority). A
protected attribute usually represents a population sub-group that
has historically suffered from discrimination and therefore some
form of (approximate) parity or non-discrimination regulation in
the predictive algorithm is desired for these protected groups [9].
Fairness is a complex concept and there are different and sometimes
conflicting definitions and thus a variety of fairness metrics [34].
Although the definitions of fairness vary, it has been empirically
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shown that there is usually a trade-off between the accuracy and
fairness of prediction, i.e., improvement in fairness is generally
at the expense of the algorithmic accuracy [2]. In this paper, we
propose a novel algorithm to correct under-reporting in crime data
while controlling for fairness across protected attributes and accu-
racy. By properly incorporating domain knowledge about potential
under-reporting - which is a source of data bias - we will show that
we can improve both fairness and crime prediction accuracy for
mobility-based crime prediction algorithms.

3 METHOD

Mobility-based crime prediction can be framed as a regression
problem: given a region of interest i, e.g., a city, a set of mobility-
based features u; characterizing the dynamic spatial structure of
i extracted from past mobility data and a set of determinants s;
that characterize under-reporting in i, predict the number of future
crimes z; in that region, ie.,

z; = F(uy, sy), (1)

where F is the predictor to be trained. F can represent under-
reporting-unaware models, i.e., models that do not address under-
reporting and use crime data as is, such as generic machine learning
models; we hypothesize these models will make biased crime pre-
diction due to the inherent bias in the reported crime data. F can
also represent under-reporting-aware models, such as our proposed
Bayesian model that explicitly models the under-reporting issue so
as to mitigate bias.

In this section, we will introduce three major components of our
proposed method: 1) The construction of mobility-based features
u; based on Call Detail Records (CDR) data; 2) The Bayesian hierar-
chical model for mobility-based crime prediction that addresses the
under-reporting issue using a set of under-reporting determinants
si; 3) The process of fairness and accuracy evaluation for crime
prediction. Table A.1 in the Appendix presents a notation summary.

3.1 Mobility-based Hotspots Features

As stated in the Related Work, we will focus on mobility-based
crime prediction models that exploit the predictive power of the
dynamic hotspots and urban spatial structures in cities by analyzing
the relationship between hotspots and crime incidents.

3.1.1  From Mobility Data to Urban Hotspots. The mobility data
used in this paper are Call Detail Records (CDR). CDR are a com-
monly used mobile phone data collected by telecommunication
networks for billing purposes. CDR provide - among other features
- spatio-temporal data about individual mobility behaviors. CDR
locations are represented as the (latitude, longitude) pairs of the cel-
lular towers that mobile phones are using when making phone calls
or sending texts. The spatial coverage of cellular towers is often
approximated via Voronoi tessellation. For each Voronoi polygon
we can compute the hourly footfall, defined as the average number
of hourly unique users present at a given polygon (see Figure A.1(a)
in Appendix).

Due the irregularity of Voronoi tessellation, we interpolate foot-
fall from Voronoi polygons to regular grids, with the assumption
that footfall within a Voronoi polygon is uniformly distributed over
space. That is, the footfall for a grid within a Voronoi polygon is
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proportional to the overlap between grid and Voronoi polygon (see
Figure A.1(b)). In order to detect urban hotspots, we follow a similar
approach to [23]: 1) for each hour of the day, we apply the Loubar
method to the hourly footfall of each grid so as to detect the up-
per bound of the number of hourly hotspots (Figure A.1(c)); 2) the
grids that are detected as hotspots over the 24 hours of the day are
identified as permanent hotspots (Figure A.1(d) in Appendix). The
permanent hotspots represent the most important centers of dense
activity in the urban environment and are the ones that we will use
to predict crime incidents.

3.1.2  Urban Hotspot Features. In this paper, we will explore three
types of urban hotspot features that have been traditionally used in
related literature for hotspot analysis and urban spatial structure:
scale, sprawl and compactness. The definition and calculation of
features are explained as follows:

(1) Hotspot Scale quantified in terms of number of grids in a
city that are detected as hotspots (NHS) and the total geographical
area covered by the hotspots detected (AHS).

(2) Urban sprawl characterizes a type of metropolitan decen-
tralization or sub-urbanization where a large percentage of a city’s
residential and/or business activity takes place outside of its central
location [36]. We use the following indices to quantify the degree
of urban sprawl:

e Compacity coefficient (COMP) [23] measures the sprawl of
the detected hotspots over a city, with smaller COMP values
associated to less dispersed hotspots with respect to the size
of the city. Let A be the geographic area of the city of interest,
hs be the set of hotspots, |hs| be the number of hotspots and
dj  the distance between the centroids of hotspot j and k.

hs hs

o ZE

NA " sl (s = 1)/2

e Mass Compacity coefficient (MCOMP) is a modified compac-
ity coefficient that weights the distance between hotspots
by the population of each grid, and measures the average
distance between individuals located within the detected
hotspots. The smaller MCOMP is, the less dispersed the
hotspots are with respect to the size and population of the
city. Let p; be the population in grid ;.

|hs|

hs|
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(3) Urban compactness The major difference between urban
compactness and urban sprawl indices is that sprawl is always mea-
sured with respect to the size of a city e.g., the indices are normalized
by the square root of the geographical area, while compactness is
based on the assumption that the most compact form of a shape is
a circle [1]. Therefore, compactness indices measure compactness
in terms of geometrical properties, and are thus normalized by the
reference circle e.g., an equal-area or equal-perimeter circle. Urban
compactness indices range from 0 to 1, with 1 representing the
exact continuous cirle. We consider the following four indices that
are commonly used in hotspot measurement literature:

e Cohesion (COHE) [1] is the ratio of the average distance-
squared among all points in the reference circle and the

COMP = @)

MCOMP =
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average distance-squared among all points in the hotspot
areas. Large cohesion means people in hotspot areas are very
close to each other. Let r be the points of hs in the rasterized
format, |r| be the number of points and dr; i be the distance
between the j- and k-th point.

AHS/

2 [rl < Irl 2
TIOTD Zj=1 Zkmjut Pk

COHE =

©

e Proximity (PROX) [1] is the ratio of the average distance
from all points in the reference circle to its centre and the
average distance to the geometry center of the hotspot areas.
The proximity index focuses on the distance between points
from the geometry center instead of the point-wise distance
in the cohesion index. Let g be the center of gravity of hs and
dgi be the distance between the j-th point and the center g.

£\/AHS/n

1 ylpl
m Zj:l dgj

PROX = (5)

e Normalized moment of inertia (NMI) [22] is based on the
dispersion of points from the center of its shape. It involves
the calculation of the second moment of an area about a
point, also known as the moment of inertia (MI). The MI
is then normalized by the MI of the reference circle, hence
normalized moment of inertia.

e Normalized mass moment of inertia (NMMI) [22] takes into
account the mass distribution of a shape. The previous three
compactness indices consider only the geometric shape i.e.,
each point in the shape is equally important in the compact-
ness. Nevertheless, in our case, each hotspot might have a
different estimated population or mass, and they can still
be compact - even though their geometry shape is not - by
having the majority of the population concentrate around
the mass center. The reference circle in NMMI is no longer
an equal-area circle, but a circle with equal-effective-area.
The mathematical derivation for the calculation of NMI and
NMMI can be found in [22].

3.2 Bayesian Model for Under-Reported
Crimes (BURC)

As explained in previous sections, the problem of under-reporting in
crime data is an important source of potential bias in mobility-based
crime prediction algorithms that might affect protected groups. In
this paper, we develop a Bayesian hierarchical model to mitigate
under-reported crime incidents by inferring two variables (1) the
unobserved "true" crime incidents i.e., all the crimes that have oc-
curred regardless of whether they have been reported and recorded,;
and (2) the reporting rate i.e., the ratio of true crimes being reported
in the crime data. The core of this Bayesian model is that we assume
the crime incidents are generated following a Poisson distribution
given the urban spatial structure features and that the reporting
rate is dependent on the determinants of under-reporting through
a logistic link function.

For a given city i, let y; be the volume of true crime incidents
(hidden variable), A; be the average incident occurring rate for
true crime incidents for the Poisson distribution, z; be the volume

Jiahui Wu, Enrique Frias-Martinez, and Vanessa Frias-Martinez

of reported crime incidents, and 7; be the reporting rate (hidden
variable). We model the generative process of crime incidents as
follows:

yi|Ai ~ Poisson(4;) (6)
zi|Ai, i ~ Poisson(riA;) (7)

= k
log(Ai) = ap + Z Ofku,-( ) (8)

k=1
i z ()
log| = —|=fo+ > Bisi )
i =

The volume of true crimes y; follows the Poisson distribution
given the average occurring rate A;; and the volume of reported
crimes z; also follows a Poisson distribution but the occurring rate
is m;A;, discounted by the reporting rate 7;. The 4; is modeled by the

logarithmic link function to ensure A; > 0 and the 7; is modeled by
WL u®HT
i
is the feature vector for city i and @ = («, @1, ..., ax)T are the coef-
D D)T
[ 1
is the feature vector for city i and g = (o, f1, .- ﬁ])T are the co-
efficients to model the reporting rate of reported crimes. In our
study, the feature vectors u; for the true crimes occurring rate A;
are the urban hotspot features that characterize the dynamic spatial
structure of a city and which has been related to crime incidents
[37]. The feature vectors s; are determined by domain knowledge
about the determinants for the reporting rate of the types of crimes
of interest. For example, studies have shown that poverty rate [35]
and unemployment rate [25] can decrease the likelihood of prop-
erty crime incidents, such as burglaries, being reported. Therefore
the feature vector s; for the under-reporting process for property
crimes would contain poverty rate (PR) and unemployment rate
(UR) for each municipality. Similarly, gender, age and marital sta-
tus of the victims [18], as well as the percentage of female-headed
households with children, poverty rate (PR) and foreign born popu-
lation rate (FR) of census tracts [33] have been shown to influence
violent crime reporting behavior. Therefore, these factors would
be the s; determinants for violent crime prediction. Section 4.1
explains the specific features we use for our model in detail.

By treating the volume of reported crime incidents as observed
variables and the volume of true crime incidents and reporting rate
as hidden variables, this model manages to separate the bias in the
crime reporting process from the volume of true crimes. In Section
4.2 we will show that this model can more accurately infer crime
volumes while making more fair predictions.

the logistic link function to ensure 7; € (0,1). u; = (u

ficients to model the true crimes occurring rate. s; = (s

3.3 Fairness and Accuracy Evaluation

As mentioned in the related work, fairness evaluation is often based
on the notion of protected attributes such as gender, race or income
levels. Although there are various definitions of fairness, its main
objective is to achieve some form of (approximate) parity across
the various groups defined by the protected attribute e.g., female
vs. male, low-income vs. high-income. In this paper we will consider
two protected attributes that have been observed to receive unfair
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Figure 1: The framework of our study. BURC is our proposed
Bayesian hierarchical model and its implementation details
are in Fig. A.4. Z; is the predicted number of reported crimes
by different models and §; is the predicted number of "true"
crimes by BURC.

treatment and suffer from discrimination in the criminal justice
system: income and race [17].

In our crime prediction problem setting, we are evaluating fair-
ness for a regression problem. A common choice of fairness metric
for regression problems given a binary protected attribute is the
mean difference i.e., the difference between average prediction val-
ues in the positive group e.g. female, and the average prediction
values in the negative group e.g., male [6]. The mean difference is a
real number with a value of zero signifying no attribute effect or
dependency. The larger the absolute value of mean difference is, the
less fair the predictions are for a given protected attribute. Given
that we will work with non-binary protected attributes (income
and race) i.e. attributes defining more than two population groups,
we generalize the definition of mean difference for binary groups
into multiple groups. We compute the mean difference for each
group as a "1 vs all" setting i.e., the MD; for group i is computed
as the difference between average prediction for group i and av-
erage prediction for other groups. In addition, we will compute
the group error i.e.,, the RMSE between predicted and ground truth
reported crimes within each group, to show the fairness in terms
of performance difference across different protected groups.

To assess the impact of addressing under-reporting in crime data,
we will use the proposed BURC model to infer the volumes of true
crimes; and we will evaluate the fairness and the accuracy of the
BURC predictions via mean difference across protected groups (see
Figure 1). Finally, these results will be compared against a set of
baseline classifiers that use the reported crime data without any
under-reporting treatment. Given that the volumes of true crimes
have a different scale than the reported crimes, and given that the
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mean difference we use to measure fairness is scale dependent, we
will use the mean difference normalized by the average of reported
crimes and true crimes to allow comparison between models. Sim-
ilarly, since different protected groups will have different scales
for average prediction, we will also normalize RMSE by the group
average of the prediction to show the relative group error.

4 EXPERIMENTS

To assess whether addressing under-reporting in crime data can
improve the fairness and accuracy of crime prediction models, we
focus on crime and mobility data from 1, 379 municipalities in Mex-
ico. 90% of the municipalities have population less than 80, 000 and
geographic area less than 2,000 km? while the largest population
is 1,815,786 and the largest area is 53,256 km?. In our study, we
consider two types of crime: property crimes and violent crimes
across municipalities in Mexico.

4.1 Experiment Setting

4.1.1 Data. We have used four data sources:

1. Mobility data is extracted from aggregated and anonymized
Call Detail Records (CDR) from October 2009 to June 2010 across
all 1,379 municipalities in Mexico (see Fig. A.2 in Appendix). No
individual data has been used, only aggregated statistics at the cell
tower level. As described in Section 3.1, CDR data is used to extract
footfall and hotspot features.

2. Reported crime statistics are obtained from Mexico’s Secre-
tary General of National Public Security (SESNSP) [30]. We have
retrieved property and violent crime data from 2011 for the 1,379
municipalities under study. Property crimes in this study mainly
include thefts, thefts from vehicles and burglaries, while violent
crimes include robbery, sexual offense, homicide, battery, assault
and kidnapping. These annual volumes of reported property crime
or violent crime are used as the observed variables z;,i = 1, ..., 1379
in the BURC model. The range of number of reported property
(violent) crimes in these municipalities is [0, 17655] ([0, 28329]),
the average is 265 (522) and the standard deviation is 1091 (1868).
The volumes of reported property (violent) crime for 90% of the
municipalities are less than 450 (900). Therefore there is a large
variation in the number of crimes across municipalities.

3. Determinants of under-reporting in BURC (as described in
Section 3.2) include poverty rate (PR), unemployment rate (UR),
adult rate (AR), the percentage of people who are never married
(never married rate, NMR), male to female ratio (M/F), male-headed
to female-headed household ratio (M/FHH) and the percentage
of population born in other municipalities (foreign-born rate, FR).
Poverty rates are obtained from Mexico’s National Council for the
Evaluation of Social Development Policy (CONEVAL) [12] and the
other indicators are obtained from the 2010 Population Census [19].
PR and UR are used in the BURC model as the domain knowledge
features s; to characterize the reporting rate of property crimes ie.,
factors that affect the percentage of crime incidents being reported,;
while AR, NMR, M/F, M/FHH, FR and PR are used as s; in the violent
crime model.

4. Protected attributes for fairness evaluation include average
income and statistics of indigenous population from CONEVAL
[12]. The average income is a real-value attribute. We have divided
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income into quartiles of average income, and assigned an income
group label to each municipality: from IcQ1 (lowest average income)
to IcQ4 (highest average income). On the other hand, the census
identifies 4 types of municipalities determined by the presence of
indigenous population (IP): IP1 characterizes municipalities with-
out indigenous population (there are 5 such municipalities in our
dataset); IP2 are municipalities with less than 40% of the population
being indigenous and the indigenous population being less than
5000 (955 municipalities); IP3 characterizes municipalities with less
than 40% of the population being indigenous and the indigenous
population being 5000 or more (213 municipalities); and IP4 that
represents municipalities with more than 40% of the population be-
ing indigenous (206 municipalities). These four types of indigenous
municipalities, from IP1 to IP4, characterize the increasing presence
of indigenous population in a municipality.

4.1.2  BURC settings. The BURC model is implemented using NIM-
BLE in R [14] and the posterior distribution is inferred by Markov
chain Monte Carlo (MCMC) sampling. The basis of MCMC sampling
is that when the Markov chain converges, the samples generated by
MCMC sampling are the joint posterior distribution of the Bayesian
model. The burn-in period is 80, 000 iterations where samplings
from MCMC are discarded before the Markov chains converge to
the posterior distribution. After the burn-in period, another 80, 000
iterations are used to generate posterior samples with thinning
intervals of 40. Four independent chains are used to sample and
examine the convergence of the model.

The prior distribution for a and f in the BURC model is com-
puted as follows: g is defined by a normal distribution N(4,2) to
be conservative when making large crime volume predictions i.e.,
the probability of ap > 8 (number of true crimes > 2981 given
all u features equal to 1) is 2.5%. The prior distribution for f is
defined as N(-2, 0.5), because the national survey of victimization
in Mexico (ENVIPE) suggests that the under-reporting rate of all
crimes is around 88% in 2010 [15] and the inverse logit of -2 is 0.12.
The prior distributions for other coefficients, . and f8; are defined
with N(0,100) which are relatively non-informative priors.

After assessing the convergence of the MCMC sampler, we use
the mean point estimate of the parameters to make predictions
for each municipality i. Specifically, we compute: 1) the predicted
volume of true crimes, which is the expected value of the Poisson
distribution for the generation of true crimes, and which is esti-
mated as J; = Ai1 2) the predicted reporting rate, which is estimated
as 7;; and 3) the predicted volume of reported crimes, which is the
expected value of the Poisson distribution for the generation of
reported crimes, and which is estimated as 2; = f[iii. The process
of implementing BURC using NIMBLE is summarized in Fig. A.4.

4.1.3  Evaluation. The evaluation focuses on understanding if ad-
dressing the under-reporting issue in mobility-based crime predic-
tors improves the fairness and accuracy of the predictive models.
To achieve that, we will analyze fairness and accuracy of the pro-
posed BURC model against a battery of three baselines, which are
commonly used machine learning models for regression: Random
Forest (RF), Bagging (BAG) and XGBoost (XGB). All baselines use
random search hyperparameter tuning with a validation set from
the training data to select the best hyperparameters. The feature
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Metric RF BAG  XGB BURC
Property RMSE 763.1 803.8 810.8 601.2
Crimes MAE 198.4 210.5 2115 180.4

Correlation 0.73 0.68 0.67 0.82
Violent RMSE 1301.4 12945 1306.0 1160.0
Crimes MAE 404.7 406.1 404.9 346.1

Correlation 0.73 0.74 0.73 0.81

Table 1: Average cross validation performance for baselines
and BURC model. BURC model has much lower error and
higher correlations than the baselines.

vectors used to train the baselines are a concatenation of hotspot
features (u;) and domain knowledge features e.g., unemployment,
poverty rates or gender (s;) so that baselines have access to the
same information as our proposed BURC model.

In our experiment, we use 5-fold cross validation to split the
data into training and testing sets: the 1,379 municipalities are
randomly split into 5 folds and in each experiment, 1 fold is used
as testing set for evaluation and the 4 remaining folds are used
for training models. Model performance and model fairness are
reported as averages across all 5 runs. To evaluate the performance
of the mobility-based crime prediction models, we use the Root
Mean Square Error (RMSE), the Mean Absolute Error (MAE) and
the correlation between predicted and ground truth volumes of
reported crimes. Compared to MAE, RMSE penalizes models that
have large errors. Fairness, on the other hand, is measured by the
mean difference and group errors as described in Section 3.3. Next,
we present our main results.

4.2 Results

4.2.1 Convergence of BURC. We assess the convergence of the
BURC model by autocorrelation tests and Gelman-Rubin conver-
gence diagnostic [4]. Samples from MCMC samplers are not in-
dependent i.e., the current sample being drawn is dependent on
the previous sample, and thus there is autocorrelation among the
posterior samples. Autocorrelation tests compute the autocorre-
lation with lag k, which is defined to be the correlation between
the samples k steps apart. If the MCMC sampler has converged
and reached the stationary distribution, the autocorrelation value
should be small as k increases and 0 means samples are independent
with samples after k iterations [11]. In the reported property crime
experiment, the autocorrelation drops as k increases and eventually
converges around 0 after 50 iterations (see Figure A.3 in the Appen-
dix). Similar behavior was observed for the violent crime model.
Gelman—-Rubin convergence diagnostic requires multiple Markov
chains with different starting points and assesses the convergence
by computing the potential scale reduction factor (PSRF) based on
between-chain and within-chain variance. If the MCMC sampler
converges, the PSRF is close to 1 [4]. The PSRFs of all coefficients in
BURC in both types of crime experiment are less than 1.01 suggest-
ing our model converges well in both experiment and the samples
from this sampler can be used to estimate the posteriors.

4.2.2  Performance of Reported Crime Prediction. In this section,
we compare the BURC model performance against the baselines.
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IcQ1  IcQ2 1cQ3 IcQ4 | AbsSum
z -1.30  -1.16 -0.89 3.45 6.80
ZRF -1.20  -0.99 -0.60 2.84 5.63
ZBAG -1.16  -0.98 -0.56  2.76 5.46
txep  -121  -105 -0.66 2.98 5.90
tpUurc  -1.28  -1.14  -0.71  3.22 6.34
GsUrRc -0.87 -0.62 -0.32 1.84 3.66

Table 2: MD for protected attribute income group in prop-
erty crime prediction. The predicted volumes of true crimes
with under-reporting correction (Jgyprc) are fairer than
baselines across all and each of the income groups.

Table 1 summarizes the experimental results. For property crime
prediction, the best correlation between actual and predicted crime
incidents for the baseline models is 0.73 (Random Forest) while that
value increases to 0.82 for our proposed BURC model. As for violent
crime prediction, the performance of three baselines is similar and
our BURC model still has the highest correlation. This result shows
the effectiveness of using urban hotspots features to predict future
crime incidents; but more importantly, it also demonstrates that
by explicitly modeling under-reporting in crime data, our BURC
model can perform better than common machine learning models.
In addition to higher correlation, BURC reduces the RMSE and MAE
by 21.2% and 9% for property crimes prediction and by 10.4% and
14.4% for violent crimes.

4.2.3  Fairness: Mean Difference. In this section, we evaluate the
fairness of the BURC and baseline models for two protected at-
tributes, income and presence of indigenous groups, using the mean
difference (MD) described in Section 3.3. We mostly discuss the
MD results for property crime prediction, since results for violent
crime follow a similar trend. Results for the latter can be found in
the Appendix (Tables A.2 and A.3). Tables 2 and 3 summarize the
normalized MD for both protected attributes in the property crime
prediction. The first 4 columns in each Table represent the mean
difference MD; between the average volume of crime incidents for
group i and all other groups e.g., column IcQ1 represents the mean
difference between the average volume of crimes for group IcQ1
and the average of crime volumes in municipalities that are not
in group IcQ1. The last column AbsSum is the sum of the absolute
mean difference from all four columns, and we use it to evaluate the
overall fairness across different groups. On the other hand, the row
z represents the mean difference of the actual reported crimes in
the testing set (ground truth) and evaluates the fairness in the data
itself; the row Z,,,,4.; represents the MD of the predicted reported
crimes for the three baseline models and for our proposed BURC
model without under-reporting correction (model in formula 7, Sec-
tion 3.2); and Yy re represents the MD of the predicted volumes of
true crimes i.e., volumes of crimes post under-reporting correction
as computed by BURC (model in formula 6, Section 3.2).

Tables 2 and 3 show that the BURC model addressing under-
reporting (§pyRrc) has fairer crime predictions across all groups i.e.,
AbsSum MD is the lowest for both income and presence of indige-
nous groups. These results highlight that by correcting the under-
reporting, the BURC model does a better job at providing fairer
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IP1 IP2 IP3  IP4 | AbsSum
z -0.60 -2.04 440 -1.07 8.10
ZRF 2056 -1.14 2380 -0.94 5.44
2gac 053 -0.98 251 -0.92 4.94
ixgp  -0.54 -1.11 280 -0.99 5.44
ipurc  -0.47 -136  3.27 -1.08 6.17
9BURC  -0.52 -1.10 237 -0.59 4.58

Table 3: MD for protected attribute indigenous group in
property crime prediction. The predicted volumes of true
crimes with under-reporting correction (jgyrc) are fairer
than baselines across all groups and are in favor of IP3 and
IP4 which have more presence of indigenous population.

predictions across groups. Looking in depth into each protected
attribute, we see that BURC provides the lowest mean difference
(highest fairness) across all income groups: from low (IcQ1) to high
(IcQ4) average income. However, although BURC has the lowest
sum of absolute MD across all four types of indigenous population
presence, we observe that the BURC model provides fairest predic-
tions only for groups IP3 and IP4, which are the groups with the
largest indigenous population, and those who have traditionally
suffered more from biased predictions; while other models that do
not correct for under-reporting provide slightly fairer predictions
for groups IP1 and IP2, which are those with the lowest percentages
of indigenous population and that represent groups that have been
traditionally associated to lower biases by prediction models. Simi-
lar experiments with violent crimes revealed that BURC achieved
the highest fairness for all IP groups except for IP1 (see Table A.3
in Appendix). These results also show that by correcting for under-
reported crime rates, we are slightly positively discriminating in
favor of disadvantaged municipalities with mid to high volumes of
indigenous people.

Based on results for the mean difference for both property and
violent crimes, we have the following high-level observations for
both protected attributes: 1) the ground truth reported crimes (z)
show high bias both in terms of income and indigenous groups,
as the sum of absolute MD is large; 2) the predictions from all
the models have lower MD for each group than the ground truth,
suggesting that using urban hotspot features for crime prediction
decreases the bias (increases fairness) when compared to the ground
truth; 3) although BURC’s prediction for reported crimes (Zgyrc)
is less fair in terms of MD, the advantage of BURC is that it can
predict the true crimes including those failed to be recorded in
the crime statistics. The inferred true crimes (§gyrc) reduce the
AbsSum almost by half compared with the reported crimes and is
much fairer than the baselines. This suggests that modeling under-
reporting can improve the prediction accuracy and fairness at the
same time, because no fairness regularization is added to limit
the accuracy of the prediction for the observed reported crimes
(2BURC)- Z2BURC has a distribution more similar to the ground truth
(z) than the baselines, thus also suffers from data bias in reported
crimes, albeit lower than z. However, by modeling under-reporting
through 7, §gyrc manages to mitigate bias and increase fairness.
The fact that §pyRrc is much less biased suggests we can use Ygyre
to guide crime-related decision making.
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IcQ1 IcQ2 IcQ3 IcQ4 IP1 P2 P3 P4
RF 50.0 (7.4)  96.1(3.0) 197.0 (2.5)  1507.3 (1.6) RF 14.5(5.2) 275.4(2.9) 1824.0 (15)  89.3 (4.0)
BAG 1022 (148) 105.1(35) 212.9(2.8) 1579.2(1.7) BAG  27.7(10.7) 309.8(33) 1901.3(1.5) 151.9 (6.5)
XGB  69.7(10.1) 87.1(2.8) 159.9(2.0) 1602.9 (1.7) XGB  21.5(11.1) 3374 (3.4) 1901.1(1.6)  93.9 (4.3)
BURC  26.4(3.9) 73.3(2.5) 180.6(23) 1154.3(1.2) BURC 59.6(19.5) 363.4(3.6) 1277.5(1.0) 46.4(2.0)

Table 4: The absolute group RMSE (relative RMSE to the
group average in the brackets) for income groups. BURC has
more balance performance across all income groups and re-
duces relative errors in the low income group substantially.

4.2.4  Fairness: Group Error. In this section, we evaluate the fair-
ness in terms of group error. With this metric, we aim to find the
best model with balanced performance for each protected attribute.
Together with the mean difference, these two metrics will allow us
to identify the best model in terms of performance (lowest error)
and fairness. Here we use RMSE to measure performance as the
error of the predictions. However, as shown in Tables 2 and 3, dif-
ferent groups for a protected attribute have different scales for the
number of reported crimes e.g., the average of reported crimes in
group IcQ1 is different from the average in group IcQ4. Therefore,
we calculate not only the absolute RMSE but also the relative RMSE
- normalized by the group average of reported crimes - as shown in
Tables 4 and 5. We only discuss property crime prediction results.
Violent crime analyses have a similar outcome and are presented
in the Appendix (see Tables A.4 and A.5).

Based on the results for group errors as well as the mean differ-
ence, we make the following observations: 1) In terms of absolute
errors, BURC substantially reduces the large errors observed in
the baselines e.g., the RMSE for IcQ4 is reduced from 1507.33 to
1154.32 or IP3 is reduced from 1823.94 to 1277.39; this error re-
duction allows BURC to make more balanced predictions across
different groups, thus increasing accuracy and fairness. This also
explains why BURC decreases the RMSE by 21%, a much larger
improvement than MAE, as mentioned in Section 4.2.2; 2) In terms
of relative errors, the prediction errors are distributed more evenly
over the income groups when compared to other baselines, and
BURC substantially reduces the relative errors in the lowest in-
come group; 3) Although BURC does not achieve the lowest group
errors for all groups, BURC consistently makes good predictions
for disadvantaged groups, such as municipalities with low income
or municipalities with high percentages of indigenous population.
This is meaningful because BURC provides higher confidence in
that disadvantaged groups are not unfairly treated in the predic-
tion; 4) BURC performs similarly both in terms of mean difference
and group error i.e., BURC has good scores for almost all income
groups and for municipalities with large indigenous population,
confirming that by addressing under-reporting both performance
and fairness can be improved.

5 INSIGHTS ABOUT CRIME OCCURRENCE
AND UNDER-REPORTING
In this section, we aim to quantify the influence of different mobility

and socio-economic features on the true crime occurring rates and
reporting rate in BURC. This analysis will reveal insights that could

Table 5: The absolute group RMSE (relative RMSE to the

group average in the brackets) for indigenous groups. BURC
reduces substantially the prediction errors for IP3 and IP4,
i.e, municipalities with large indigenous population.

Coeflicient Feature Property Crime  Violent Crime
ap (intercept) 0.78 (0.03) 5.89 (0.03)
log(NHS) 0.93 (0.01) 0.08 (0.01)
log(AHS) 0.45 (0.01) 1.01 (0.01)
log(COMP) 0.49 (0.02) 1.05 (0.02)

o log(MCOMP) -1.49 (0.02) -1.83 (0.02)
log(COHE) -3.89 (0.51)  -12.49 (0.39)
log(PROX) -0.71 (0.01) -0.09 (0.01)
log(NMI) 5.67 (0.51) 13.55 (0.39)
log(NMMI) -2.12 (0.01) -1.58 (0.01)
Po (intercept) 2.71 (0.04) -27.69 (0.19)
log(UR) 0.18 (0.01) /
log(PR) -1.59 (0.01) -0.28 (0.00)
log(AR) / 2.08 (0.04)

p log(NMR) / 4.90 (0.03)
log(M/F) / -0.61 (0.04)
log(M/FHH) / -1.40 (0.01)
log(FR) / 0.47 (0.00)

Table 6: Mean and standard deviation (Std) for posterior dis-
tribution of the coefficients « and f in the link function for
corresponding features. "/" means the corresponding feature
is not used in the prediction model.

be used to 1) understand better the relationship between crimes and
mobility patterns so as to improve safety in cities, and 2) evaluate the
role that demographic and socio-economic data including poverty
rate, unemployment or gender play in under-reporting so as to
inform policies to encourage reporting.

For that purpose, we fit the proposed BURC model with all the
reported crime statistics for: (1) property crimes and (2) violent
crimes for the 1,379 municipalities. The distribution of the mean
point estimate for the reporting rate for property and violent crimes
across all municipalities, reveals a prevalent under-reporting issue
with 94% of municipalities having less than 10% of violent crimes
being reported (see Figure A.5 in Appendix). These results are
consistent with the findings of the ENVIPE survey in Mexico where
under-reporting rates were reported to be around 90% from 2010 to
2014 [15]. To understand the role that mobility and socio-economic
features play on the true crime occurring rates and reporting rate in
BURC, we compute the mean point estimate of the coefficients & in
the log link function and f in the logistics link function, respectively.
Table 6 shows the coefficients for both property and violent crimes
models.
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(c) Emiliano Zapata: small ¢ and large 7z (d) Ziracuaretiro: small § and small 7

Figure 2: Permanent hotspot distribution in four sample mu-
nicipalities to show the diverse spatial structure with one
or multiple activity centers. The legends represent the foot-
fall per hotspot. Varying levels of predicted volumes of true
crimes 7 and reporting rate 7 per municipality are reported
in Table 7.

municipality (a) (b) (c) (d)

z 4579 46 9 20
2BURC 456341 6545 3096 6.01
JBURC 473833 117645 5032 64.30
T 0.96 0.06 0.62 0.09

NHS 27 60 9 8
AHS 5.42 13.39 1.92 1.43
COMP 0.75 1.20 0.55 0.32
MCOMP 0.79 1.18 0.53 0.31
COHE 0.03 0.13 0.80 0.88
PROX 0.18 0.36 0.92 0.95
NMI 0.03 0.13 0.80 0.88
NMMI 0.02 0.13 0.80 0.88
PR 0.85 41.47 530 25.49
UR 4.79 7.52 8.74 2.39

Table 7: The ground truth volumes of reported property
crimes z, predicted reported crimes Zpyrc, predicted true
crimes jpyRe, predicted reporting rate 7z, urban hotspots fea-
tures and reporting rate determinants, poverty rate (PR) and
unemployment rate (UR), for the examples in Figure 2.

5.1 True Crime Rates Analysis

For the true crime occurring rates, we have one intercept term, a,
and eight coefficients corresponding to the eight urban hotspot
features (expressed in log scale). @p = 0.78 in the property crime
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model represents the setting when all urban hotspot features take
the value of 1 and for which the true crime occurring rate is 2.18
(ap is in the log link function and exp(0.78) = 2.18). Similar inter-
pretation applies to the violent crime model. Positive (Negative)
coefficients mean that larger (smaller) feature values are associated
to the larger (smaller) true crime occurring rates. The coefficients
for NHS and AHS are positive, which means that the more hotspots
detected i.e., the more active people move around in the munici-
pality, the more crimes there are. For the urban sprawl features,
whether or not to weigh the distance between two hotspots by
population density has different effects on the crime occurring rate.
MCOMP has a negative coefficient and the scale is larger than the
coefficient for COMP, suggesting that if the population is more
spread out relative to the size of the municipality, the crime inci-
dent numbers will be smaller. In fact, having the population more
spread out translated into low population density, which means
that the potential targets for property crimes are sparse. Note that
the maximum value for the urban compactness features (COHE,
PROX, NMI and NMMI) is 1 which represents the most compact
form i.e, the reference circle. The negative coefficient for COHE,
PROX and NMMI suggests that the minimum crime occurring rate
is achieved in the most compact form; as the hotspots become less
compact with respect to the equal-area reference circle, the crime
occurring rate increases.

As an example to delve into these relationships, Figure 2 and Ta-
ble 7 show the distribution of permanent hotspots and the variables
in the BURC property crime models for four example municipalities
in our dataset: Guadalupe (a), Donato Guerra (b), Emiliano Zapata
(c) and Ziracuaretiro (d), respectively. These four municipalities
have different levels of true crime occurring rate and reporting rate,
as shown in Table 7. Recall that the predicted volume of reported
crimes is the expected value of the Poisson distribution and there-
fore could be smaller than the ground truth reported crime; and that
the reporting rate is the ratio of predicted reported crimes z over
predicted true crimes §. Looking at Table 7 and comparing Figure
2(a) and 2(b) with Figure 2(c) and 2(d), we observe that municipali-
ties with high volumes of true crimes ((a) and (b) have 4738.33 and
1176.45 as shown in Table 7) tend to have disperse spatial structure
i.e., have multiple activity centers; while municipalities with low
volumes of true crimes ((c) and (d) have 50.32 and 64.30 as shown
in Table 7) tend to be more compact i.e., only one activity center is
identified.

5.2 Reporting Rates

For the reporting rates, Table 6 shows that we have one intercept
term, foy, two coefficients for property crimes and six for violent
crimes corresponding to different socioeconomic determinants in
log scale. fp = 2.71 in the property crime model reflects that when
the PR and UR are 1%, the reporting rate is 93.8% (f is in the
logistics link function and inverse logit of 2.71 is 0.938). Similar in-
terpretation applies to the violent crime model. In previous studies
about under-reporting of property crimes, when studied indepen-
dently, higher poverty and unemployment levels are associated to
higher under-reporting [25, 35]. Here we model the PR and UR
together and our results show that the scale and direction of in-
fluence on the reporting rate is different. In our model, poverty
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rate has a much larger influence on the reporting rate than the
unemployment rate. The larger the poverty rate is, the smaller the
reporting rate is, as reflected previously in the literature [35]. On
the other hand, unemployment rate has a small and positive co-
efficient, meaning that controlling the influence from the poverty
rate, unemployment rate only has a small effect on reporting rate
with larger unemployment rate corresponding to slightly higher
reporting rate. However, this coefficient is extremely small to draw
any conclusions. For violent crimes, the direction of influence of
these determinants are mostly consistent with the findings in the
literature [18, 33]. Going back to the examples in Figure 2 and Table
7, when we compare columns (a), (c) with (b), (d) in Table 2, we can
observe that the poverty rate is much lower when the reporting
rate is large than when it is small.

6 CONCLUSIONS

Reported crime data are an important basis for computational mod-
els that predict future crimes. Such models could potentially as-
sist city agencies on better resource allocation to mitigate crime.
Nevertheless, one of the most important sources of bias in such
data is under-reporting, which can affect the quality of the final
predictions. By leveraging the domain knowledge about possible
determinants for the under-reporting of crimes e.g., poverty rate
has influence on the under-reporting of property and violent crimes,
we developed a novel Bayesian model that explicitly addresses and
corrects under-reporting issues. The experiments and evaluation
show that our proposed model not only improves substantially the
accuracy of mobility-based crime predictors, but that also provides
fair predictions that balance performance across protected groups.
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Figure A.1: Extracting urban hotspot features from CDR data.
Variable | Definition Variable | Definition
Aj the geographic area of region i hs; the set of hotspots
djx the distance between centroids of hotspot j and k pj the population in hotspot j
ri the points of hs; in the rasterized format drj g the distance between j- and k-th point
gi the center of gravity of hs; dgj the distance between the j-th rasterized point and g;
u; A set of mobility-based features s A set of determinants of under-reporting behavior
yi Annual number of truth crimes zZj Annual number of reported crimes
Ai Occurring rate of Poisson distribution that models y; i Under-reporting rate, the expected ratio of z; to y;

Figure A.2: Municipalities in Mexico studied in this paper,

Table A.1: Notations for a region of interest i, e.g., a city.

colored in grey.

Lag

Figure A.3: Lag-k autocorrelation for the coefficients in
BURC for the reported property crime experiment. The
autocorrelation for all coefficients drops to zero with lag
larger than 10.
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IcQ1  IcQ2 1cQ3 IcQ4 | AbsSum IP1 P2 IP3 IP4 | AbsSum
z -1.28  -1.09 -0.76  3.20 6.32 z -0.60 -1.95 422 -1.02 7.79
ZRF -1.16  -096 -0.54 2.70 5.36 ZRF -045 -112 273 -0.90 5.20
ZBAG -1.11 -0.94 -0.54  2.65 5.24 ZBAG -0.43 -1.13  2.69 -0.85 5.10
ixgs  -116 -0.99 -055 2.76 5.46 ixgp 049 -1.27 296 -0.89 5.60
2gurc  -1.22  -1.01  -0.69 2.98 5.90 2gurc 057 -161 3.62 -1.02 6.82
Jsurc 077 -051 -0.19 147 2.94 JsUrc  -0.46 -0.85 1.84 -0.47 3.63

Table A.2: MD for protected attribute income group in Table A.3: MD for protected attribute indigenous group in
violent crime prediction. The predicted volumes of true violent crime prediction. The predicted volumes of true
crimes with under-reporting correction (jgyrc) are fairer crimes with under-reporting correction (ypyrc) are fairer

than baselines across all and each of the income groups. than baselines across all groups and are in favor of IP1, IP3
and IP4 which have more presence of indigenous popula-
tion.
IcQ1 IcQ2 IcQ3 IcQ4 IP1 P2 IP3 IP4
RF 102.0 (47) 183.8(2.3)  390.0 (2.0)  2560.4 (1.4) RF 109.5(33.9) 502.5(2.5) 3128.0 (1.3)  189.7 (3.0)
BAG  205.8(9.6) 195.0(2.5) 393.0(2.1) 2547.7 (1.4) BAG  127.5(31.9) 522.1(2.6) 3078.0 (1.3)  302.9 (4.7)
XGB  168.6(8.0) 226.2(2.9) 378.6(2.0) 2568.9 (1.4) XGB  211.8(93.6) 518.2(2.6) 3131.6(1.3)  255.3 (4.0)
BURC 98.2(4.7) 1947 (24) 331.9(17) 2305.4(1.4) BURC  22.9(9.8) 518.4(27) 2719.8(12) 120.2(18)

Table A.4: The absolute group RMSE (relative RMSE to the Table A.5: The absolute group RMSE (relative RMSE to the
group average in the brackets) for income groups in violent group average in the brackets) for indigenous groups in vio-

crime prediction. lent crime prediction.
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Figure A.4: The process of implementing BURC using Figure A.5: Distribution of the reporting rate for violent
NIMBLE. crimes and property crimes across all municipalities. Vi-

olent crimes have more serious under-reporting issue.



