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Abstract 

Applications related to game technology, law-enforcement, security, medicine or biometrics are becoming increasingly important, which, 
combined with the proliferation of three-dimensional (3D) scanning hardware, have made that 3D face recognition is now becoming a 
promising and feasible alternative to 2D face methods. The main advantage of 3D data, when compared with traditional 2D approaches, 
is that it provides information that is invariant to rigid geometric transformations and to pose and illumination conditions. One key 
element for any 3D face recognition system is the modeling of the available scanned data. This paper presents new 3D models for facial 
surface representation and evaluates them using two matching approaches: one based on Support Vector Machines and another one on 
Principal Component Analysis (with a Euclidean classifier). Also, two types of environments were tested in order to check the robustness 
of the proposed models: a controlled environment with respect to facial conditions (i.e. expressions, face rotations, etc) and a non-
controlled one (presenting face rotations and pronounced facial expressions). The recognition rates obtained using reduced spatial 
resolution representations (a 77.86 % for non-controlled environments and a 90.16% for controlled environments, respectively) show that 
the proposed models can be effectively used for practical face recognition applications.  
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1. Introduction 

Most research in face recognition has focused on two-
dimensional (2D) images or sequences of images due to 
their standard acquisition and the computational 
advantages offered by their regular grid structure (Li, 
2007). The main problem of using 2D patterns is that 
recognition accuracy is sensitive to: rigid geometric 
transformations, lighting conditions, facial expressions 
and/or a variety of occluding elements (such as hair, 
moustache, etc). Nevertheless, Automatic Face 
Recognition Systems (AFRS) using 2D images have 
provided excellent results when the image acquisition 
conditions are controlled (Zhao, 1999). This has 
motivated the development of techniques to reduce 
image acquisition restrictions (Zhao et al., 2003; Xie and 
Lam, 2005; Li and Zhang, 2007). Some methods have 
been proposed to tackle determined non-controlled 
variations, but they do not work well in arbitrary 
conditions (Bowyer et al., 2006). 
Working with three-dimensional (3D) face images has 

some interesting advantages over 2D images (Hsu and 
Jain, 2001): (1) more geometric information can be 
obtained from 3D data than from 2D images because 2D 
images loose depth information as they are formed 
through projections of 3D objects; (2) the measured 
features from real 3D data are not affected by the scale 
and rotation of the face; and (3) if the 3D face 
recognition system does not consider texture 
information, the recognition is immune to the effect of 

illumination variations. One important problem of 3D 
face recognition was related with the hardware needed 
for face acquisition: (1) the cost of 3D range scanners; 
(2) the scanning speed; as well as (3) the size of this kind 
of digitizers. Nevertheless, advances in computational 
processing capacities as well as the reduction of both 
cost and size of 3D digitizers, have made possible the 
development of 3D face recognition systems. In recent 
years, the interest in 3D face recognition has increased 
(Huang et al., 2003; Lee and Ranganath, 2003; 
Rajagolopan et al., 2006; Wechsler, 2007; Mahoor et al., 
2007).  
Two main components of any face recognition 

architecture are: (1) face modeling, and (2) recognition 
or matching scheme. Face modeling transforms the 
original 3D surface meshes into a set of features to better 
represent the face in the AFRS. Matching scheme 
involves the selection (and training) of a classifier that 
using the extracted features from a test face compares 
them with the facial features of different people in a 
database to determine the test subject identity. While the 
matching scheme can be efficiently implemented using 
standard machine learning techniques like Neural 
Networks or Support Vector Machines, finding good 3D 
face features (models) for recognition is, in general, a 
complex problem.  
3D Modeling approaches for face recognition can be 

classified into: a) those which combine 3D face models 
with 2D view-based techniques (Campbell and Flynn, 
2001; Ma and Wong, 2006) in order to extract features 
and to determine the face pose and/or location, b) the use 
of 2D+3D multimodal data (i.e. 2D texture image in 



addition to the corresponding depth map) as input to the 
classifier in order to demonstrate how multimodal 
2D+3D improves the 2D face recognition rates (Chang et 
al., 2005; Boyer et al., 2006) and c) the use of the 
captured 3D data exclusively to extract 3D shape 
descriptors as the local curvature, ridge lines, etc. 
(Hallinan et al., 1999; Moreno et al., 2006; Mahoor et al., 
2007). Most of the existing 3D facial recognition 
methods focus on recognizing 3D faces with neutral 
expressions (Haar et al., 2008). Our work belongs to the 
third group because we use the captured 3D data 
(without the texture image) to extract 3D shape 
descriptors for face recognition, and it overcomes the 
recognition in presence of some head rotations and 
pronounced facial expressions. 
This paper proposes and evaluates several 3D face 

modeling approaches. To validate the models, two 
matching schemes were used: (1) Support Vector 
Machines (SVM); and (2) Principal Components 
Analysis (PCA) in combination with a Euclidean 
distance classifier. We used our own 3D face database 
called GavabDB (which can be found in http://gavab.es) 
for the experiments because it presented a higher degree 
of variability among the images of each individual, 
especially related to facial expressions. 
The rest of the paper is organized as follows. First, 

Section 2 describes the State of the Art of the 3D 
Automatic Face Recognition (AFR) Systems focused on 
the existing profile and contour curves and depth-map 
based approaches for modeling 3D faces. Section 3 
includes the main features of our 3D face database and 
compares some works which have used it for their 
experiments. Section 4 presents the recognition results 
achieved with the profile and depth-maps models (both 
on a controlled and on a non-controlled environments) 
using SVM and PCA as matching schemes. Finally, 
conclusive remarks and future works are presented in 
Section 5. 

2. 3D Automatic Face Recognition: State of the Art 

The following subsections present the state of the art of 
3D face recognition systems and the existing techniques 
related to our approach.  
One of the main motivations of using 3D Automatic Face 
Recognition is to reduce some of the existing problems 
that 2D face images have (in particular, the illumination, 
pose and face expression dependences). Although 
intuitively 3D information (i.e. depth, curvature, etc) 
should provide better results than 2D intensity-based 
features, the evaluation results are still limited (Bowyer 
et al., 2006; Chang et al., 2005). There are some research 
works that compared 3D and 2D facial patterns (Chua et 
al., 2000; Lee and Ranganath, 2003; Bronstein et al., 
2003; Huang et al., 2003a). An important part on 
research in 3D face recognition systems has focused on 
3D face modeling and on image acquisition techniques.  
This section reviews the 3D AFRS and classifies them 
according to the type of modeling technique into: a) 
those which use a 3D face model to extract features from 

2D data, b) those which use 2D+3D multimodal data as 
inputs to the classifier and c) those which use the 
captured 3D data exclusively to extract 3D features from 
them.  

2.1 3D Face models to extract features from 2D data 

One common holistic technique is based on the 
correspondence between a set of 2D scene points and set 
of 3D model points in order to determine the object pose 
and its location, and also for extracting some facial 
features (Huang and Tang, 1996). In this context, a 
recent work is Ma and Wong (2006) which combines 3D 
face models with 2D view-based techniques for 
recognition. 
The use of a generic 3D head model enables to obtain 

3D information from 2D images. The generic model 
contains control points that can be displaced to adjust 
themselves to their corresponding points in the 2D 
images of the individual. These displacements deform 
the generic model generating a particularized model of 
the subject from the 2D images. The deformations are 
expressed in terms of modifications of certain parameters 
which characterize the 3D global face shape of the 
individual as well as local information. This technique 
avoids the 3D image acquisition stage of the test images. 
The need for searching 2D points in the images is a 
serious disadvantage because of the dependence on the 
acquisition conditions. Some applications of the use of a 
generic 3D head model are: analysis and synthesis of 
facial expressions (Lei et al., 1996), analysis of 
robustness to illumination or pose correction in an AFR 
systems (Lee and Ranganath, 2003), generation of 
synthetic faces to augment the number of variations of 
each individual of the training set (Vetter, 1999), among 
others. 

2.2 2D+3D multimodal data 

These techniques use 3D geometry data together with the 
2D intensity images captured simultaneously by the same 
digitizer (Beumier and Acheroy, 2000b; Wang et al., 
2002; Godil et al. 2004). (Chang et al., 2005) and 
(Bowyer et al., 2006) present studies of how multimodal 
2D+3D improves face recognition rates. 
A face verification system was proposed in Beumier et 
al. (2000a) for 3D images captured using active 
triangulation. A representation technique based on local 
features, which gathers both the 3D shape information 
and the 2D texture information, was analyzed and 
described in Wang et al. (2002). Feature points were 
located using Gabor filter responses in the 2D 
transformed domain, and the signatures of these points 
were combined with the corresponding points in the 3D 
domain. Both representations were projected on their 
corresponding subspace using PCA. The obtained weight 
vectors were integrated in an augmented vector used to 
represent the face image in the recognition system. The 
identification system was constructed using Support 



Vector Machines and achieved a 90% correct recognition 
rate using a database of 50 individuals presenting 
different facial expressions and poses. 
Other works (Tsalakanidou et al., 2003; Chang et al., 

2003) used PCA to obtain a low dimensional 
representation of 3D images (consisting in depth maps of 
the complete face) for recognition. The goal was to 
evaluate the influence of color, depth (defined as the 
distance from a scene point to the sensor) and a 
combination of both types of data in a 3D face 
recognition system. These authors compared the use of 
2D complete images and their corresponding 3D depth 
maps separately and also both representations together. 
The fusion of 2D and 3D information provided better 
results (Chang et al., 2005). These systems have not 
considered images presenting facial expressions. Pose 
variations were very limited (for example, rotations of 2º, 
5º and 10º (Tsalakanidou et al., 2003) or they were not 
considered (Chang et al., 2003). Ben Abdelkader and 
Griffin (2005) demonstrated that depth and texture 
information played complementary roles in coding the 
3D face patterns.  

2.3 3D captured data to extract 3D features 

Differential geometry has been used for feature 
extraction in the context of free-form 3D object 
recognition and also used by some authors for facial 
feature extraction (Tanaka et al., 1998). The local 
curvatures of 3D surface points and the angle among 
surface normal vectors have been proposed as 3D free-
form object descriptors for recognition (Stein and 
Medioni, 1992; Thirion, 1996; Tanaka et al., 1998; 
Hallinan et al. 1999; Campbell and Flynn, 2001; Moreno 
et al. 2006).  
A classification of segmented points according to 

planar, spherical or revolution surfaces was proposed in 
(Gordon et al. 1991). A region classification, according 
to concavity, convexity and saddle points, was used to 
localize nose, eyes and mouth. Neck, front and cheeks 
were also localized according to their smoothness 
properties. These features were used to normalize the 
images by scaling and posing them into a cylindrical 
mesh such that the volume between face and cylinder 
represented a face for recognition. The system was tested 
using 24 images corresponding to 8 individuals having 3 
images of each one of them. Feature detection was 100% 
correct, and the recognition rate was 97% using 
individual features and 100% using the whole face as 
pattern.  
The local surface curvature evaluated at a point is 

described by the directions in which the normal of the 
surface changes more and less quickly (Gray et a., 1999). 
In (Hallinan et al. 1999), a set of twelve 3D descriptors 
extracted from segmented regions using curvature 
properties of the surface were tested for face recognition 
using a database of 8 subjects and 3 images per subject 
obtaining 95.5% recognition rate assuming a previous 
100% correct feature extraction. 
Another representation of 3D range face images using 

local information is based on computing the point 
signature over specific 3D points in order to obtain 
descriptors. The point signature has been used to 
represent 3D free-form objects; in particular, 3D face 
images (Chua et al., 2000). 
Other techniques belonging to this category are those 

which use 3D profiles and surface contours (curves 
extracted from the 3D face surface) to represent the faces 
in the AFRS. Profile and contour-based face recognition 
is a very intuitive idea used by different authors (J. Y. 
Cartoux et a., 1989; T. Nagamine et al. 1992; Beumier et 
al., 2001; Pan et al. 2003). These techniques reduce the 
amount of face data to one or a few 3D curves. The 
selection of the optimal set of 3D curves and the best 
way to match them is still a research area (Haar et al., 
2008). More recent works also propose the use of these 
types of features for face recognition. In (Li, C. and 
Barreto, A., 2004) different combinations of profiles and 
contours were extracted from 3D range faces and tried 
for face recognition using a set of 27 subjects (with 27 
neutral images in the gallery and 27 neutral test images 
both captured in different times). Each face had an 
average of 18,000 vertices. Their results showed that the 
central vertical profile is the most powerful profile to 
characterize individual faces among the different profiles 
they tested. In (Li, C. and Barreto, A. et al., 2005) the 
central vertical profile and the face profile (curve where 
the face cut a plane placed at 30 mm. below the tip of the 
nose) are both used as very useful features for face 
recognition. When both are combined, better recognition 
rates (around 81%) were obtained than just using any of 
them alone. They used a database of 80 subjects for the 
experiments containing two frontal neutral images per 
subject (one gallery image and one test image) captured 
with a lapse between them between one to thirteen 
weeks. These images consisted in 640×480 array of 
range data.  

Haar et al. (2008) proved that a combination of 
contours with profiles and a second combination of 
different contours achieved a performance of 0.76 and 
0.79, respectively on the 2007 Shape Retrieval Contest 
of 3D Face Scans (SHREC 2007). 

Our research aims the analysis of new 3D face 
models that combine efficiency and robustness on 
presence of pronounced face gestures and head rotations.  

3. GavabDB: description and reported works 

This Section presents our 3D face database and describes 
a relation of works in the literature that used GavabDB 
for their experiments.  

3.1 GavabDB: justification and description  

AFR systems need from face databases in order to 
train and evaluate such systems. These databases should 
have a degree of variability among the different patterns 
of the same subject with respect to pose, illumination, 
facial expressions, etc.. There are different facial 



databases designed for different experimental purposes: 
face recognition, facial expression analysis, pose 
estimation, face detection, etc. However, most of the 
databases only provide 2D face images. The number of 
3D face databases available is limited and, in general, 
they are designed for specific aspects of recognition. To 
our knowledge, the most representative 3D face 
databases are: XM2VTS multimodal database 
(xm2vtsdb, 1999; Messer et al., 1999; Matas et al., 
2000), 3D_RMA database (Beumier Database, 2000), 
York University 3D face database (3DFaceDBYork, 
1999), Notre Dame 3D database (Notre Dame, 2003), 
FRGC dataset (Phillips et al., 2005) and GavabDB 
(Moreno et al., 2004). 
Most of the existing 3D databases contain few 3D 

meshes per subject in some cases and there are not many 
variations among the different 3D images of a person. 
Some of the databases offer variations related to some 
particular aspects but not with respect to others, and, in 
general, the variation rank is reduced. Among the 
presented databases, very few capture images with some 
kind of 3D facial expression. The database which offers 
most pronounced facial expressions and that is the 
nearest to the variability that an individual can have 
when interacting with a real face recognition system is 
GavabDB. (Li et al. 2007) expressed this as: “we focus 
on the GavabDB 3D face database in our studies as it 
offers special challenges in terms of data artefacts and 
severe facial expressions”. This high variability in pose 
and in facial expression is very important in order to test 
the robustness and the efficiency of a particular face 
representation in practical conditions. This database has 
been created to test the performance of face recognition 
systems. Moreno and Sánchez presented a preliminary 
description of the GavabDB database in (Moreno et al., 
2004). This database can be found in http://gavab.es. 
In our experiments, we have used a subset of 427 3D 

facial surface meshes from the 549 ones in GavabDB. 
These patterns correspond to 61 subject (having 7 
meshes per subject) without using the color (texture) 
information. Fig. 1 shows seven 2D images of the same 

person corresponding to the non-textured 3D meshes for 
each individual used in this work. The set of samples of 
each individual contains: two frontal images with neutral 
expression, one image in which the subject is looking 
down (+35º x-rotation approximately) with a neutral 
expression, one image in which the individual is looking 
up (-35º x-rotation approximately) with a neutral 
expression and three frontal images with some kind of 
expression (one random expression chosen by the 
individual, one smiling and other laughing). The 
remaining left and right subject’s profile images in the 
GavabDB face database (±90º y-rotation) have not been 
used in this work. 
Occlusions are present in 12 subjects (19% of the 

individuals in the database): by fringe (3), braids (1), 
beard (4), moustache (1) and both goatee and moustache 
(3). They appear in Fig. 2. On the other hand, there are 
occlusions in some gesture image which appear in the 
last column of Fig. 2. There are no individuals wearing 
glasses in the database. 
Sometimes dark parts of the face surface do not reflect 

the projected light from the 3D digitizer and then, they 
can not be sampled. Also there are occluded parts from 
the scanner viewpoint that can not be sampled. The 
scanner software offers the possibility of filling the holes 
in the meshes, which has been applied to the GavabDB 
database images. Holes are patched by linearly 
interpolating adjacent pixel values. This is automatically 
performed by the 3D digitizer software and it causes a 
surface reconstruction error but in compensation the 
resulting mesh offers us the possibility of moving from 
all new mesh nodes to the adjacent 4-connected or 8-
connected nodes (Moreno et al., 2004). Fig. 3 shows an 
example of the introduced reconstruction error by the 
filling holes stage. Also, the captured 3D faces are 
incomplete because of their auto-occlusion at certain face 
orientations.  
Our database was created using the scanner Konica 

Minolta VI-700 (Konica Minolta). Thousand of points 
approximate the surface of each sampled face and the 
local connections between these points form a mesh 

Fig. 1. Seven 2D images of the same person that corresponds to the non-textured 3D meshes. 

  

       Occlusion by hair (fringe or 
braids) 

Occlusion by beard Occlusion by moustache, 
both goatee an moustache 

Occlusion by 
tongue or hand 

Fig. 2. Examples of 2D images captured by the 3D digitizer whose corresponding meshes belong to 
the GavabDB database, which present some kind of occlusion. 

 



representing the scanned face. Cells of the mesh have 
four nodes, and occasionally three (in the border of the 
mesh). 
The 3D facial meshes have been stored forming two 

datasets containing each one images with one of the two 
following resolutions: (1) the original resolution 
(abbreviated as 1-1 resolution) which maintains all the 
points provided by the scanner, and (2) ¼ of the original 
resolution, which maintains only one of each 4 original 
points (abbreviated as 1-4 resolution). The number of 
points varies from one mesh to another one. The average 
number of vertices in the meshes is 2,350 at the 1-4 
resolution (after manually removing neck, ears and/or 
others possible patches not belonging to the face), being 
3,420 the maximum and 1,538 the minimum number of  
vertices, respectively. The goal of producing both 
datasets for this work is studying how different 
resolutions could affect the robustness of each face 
model and recognition method, regarding the 
corresponding correct recognition rate achieved and its 
processing time. Fig. 4 shows an example of a 3D face 
mesh at the original 1-1 resolution (left) and at the 1-4 
resolution (right). 
 

Looking-down rotation 

  

 
 

 
Looking-up rotation 

 
 

 
 

2D intensity image Sampled image Filling holes                                                       
result 

Rotated 

Fig. 3. Error after the filling holes stage. Last column shows the 
reconstructed base of the nose of an individual looking down and the 
nose of the same individual captured when it was visible. 
 

3.2 GavabDB: related works 

GavabDB database has been used in a variety of works 
focusing on 3D face modelling and recognition, among 
them: Joonsoo Lee (2005); Berretti et al. (2006); Berretti 
et al. (2007); Ansari et al. (2007); Mahoor et al. (2007); 
and Li et al. (2007). Different works have considered 
different subsets of the GavabDB patterns for their 
experiments. Some of them do not include pose 
variations; others do not include the “random gesture” 
and/or the “laugh” images. Besides, different numbers of 
images in the gallery and the test datasets have been 
used. Berretti et al (Berretti et al. 2006; Berretti et al. 
2007) propose a model based on Iso-Geodesic Stripes 

(IGS) extracted from the 3D face surface. An IGS is 
formed by the surface points in which the value of a real 
valued function is the same. The function they used was 
the geodesic distance from the point to a reference point 
(nose tip), divided by the Euclidean eye-to-nose distance. 
The geodesic distance (length of the shortest piecewise 
linear path on the mesh vertices) was accomplished 
through the Dijkstra algorithm. Once values of the 
function are computed for every surface point, iso-
geodesic stripes were identified by quantizing the range 
of the function values into n intervals. The face was 
characterized by the relationships among every pair of 
stripes, which were computed by the relative position of 
their points in the 3D space. They have been computed 
using 3D weighted walkthroughs (3DWW, formed by 27 
weights organized in a 3×3×3 matrix) between every 
voxel pair. Every face was represented by a graph where 
graph nodes represent iso-geodesics and graph edges 
represent their spatial relationships. The face recognition 
is achieved by graph matching. They reported 94.5% and 
82% of recognition rate for neutral and non-neutral 
expression, respectively, considering 1-1 mesh 
resolution. Our proposed approach presents some 
positive aspects comparing to this approach, for example, 
the possibility of obtaining efficient face representations 
at much lower voxel resolutions. For example, we reach 
more than 90% of recognition rate for 45×45×45 voxels 
for controlled environments. This fact is very important 
for this kind of systems. 
Other work which uses the GavabDB database is (Ansari 
et al. 2007) which uses three facial feature points 
extracted from the range images to align them to a 3D 
generic face model. Each plane defined by each triangle 
vertices of the model is fitted to the corresponding 
interior 3D range data using least squares plane fitting. 
Next, the model is subdivided into a higher resolution 
mesh which is deformed again to fit the range data. The 
final individualized model captures the surface 
characteristics of the face surface. This work does not 
experiment with images presenting facial expressions nor 
pose variations, reporting a 90.3% recognition rate for 
frontal and neutral images whose resolution is also 1-1. 
(Mahoor et al. 07) presents an approach for identification 
of both neutral faces and faces with smile expression 
using the corresponding images of the GavabDB 
database, reporting a 93.5% recognition rate for neutral 
expression and a 82% for the faces with smile expression 
(being the gallery formed by frontal images). For pose 
alignment, they extracted the locations of three feature 

 
 

Fig. 4. (Left) Original mesh produced by the 3D scanner and 
(right) the same mesh at 1-4 the original resolution.  

 



points, the inner corners of the two eyes and the tip of the 
nose. For face identification, they found the location of 
the ridge lines in the range images. These are the lines 
where the principal curvature has positive value, upper 
than a threshold. They obtained a 3D binary image that 
contained only ridges. For recognition they used 
Hausdorff distance to find the best match for a given 
probe image from the facial range images in the gallery. 
Their process of locate three feature points failed for a 
15% of the images, and their first approximation of the 
nose as the nearest point from the scanner failed for 10% 
of the images, where a manual selection of the points 
was achieved. Their proposed system do not has been 
proved using pronounced expressions which have higher 
variations from the neutral expression of the gallery 
images. 

In Li et al. (2007), each face is represented by a 
triangle mesh, pre-processed to have a uniform 
connectivity. This needs to pick manually 43 vertices 
corresponding to a face mask. The face symmetry is used 
to complete missing data. They investigate the use of 
geometric attributes including angles, geodesic distances, 
triangle areas, etc. They adapt the attributes to 
instabilities introduced by facial expressions and test 
combinations of them during the training stage, to obtain 
an optimized face recognition scheme. A one-parameter 
weighting function is proposed to stabilize a descriptor 
element, being this parameter computed in the training 
stage as the one which gives the best recognition rate 
among all tests. Five frontal images per individual were 
used (two neutral faces and three with expressions) but 
they do not considered rotated images. A set of 60 
subjects of the GavabDB was partitioned into two groups 
of 30 subjects with 5 images per person. One of the 
groups was used to adjust the system parameters during 
the training, while the other group was used for testing. 
The experiment was repeated changing the roles of both 
groups. The average recognition rate achieved was a 
93%.  

4. Voxel-based 3D Face Modeling 

In profile and contour-based face modeling, a 3D facial 
mesh can be represented by curves describing its surface. 
As an example, we can use a contour curve at the nose 
level, a contour curve at the eyes level, or a combination 
of both. Our proposed face descriptors are profiles (alone 
or in combination with others) given by curves 
corresponding to the intersection of a given cut-plane 
with the face surface.  
On the other hand, the number of points and the sampled 
area are different for each mesh, depending on the face 
shape and the head pose.  Because we use classifiers that 
need from patterns with a fixed dimension, we have 
developed a framework that (1) has a fixed length for all 
the patterns, and (2) intuitively describes the selected 
patterns. This framework represents 3D faces using 
voxels as the basic mechanism to define the proposed 
profiles. 

4.1 Voxel-based Face Representation 

The voxel representation of a face is obtained when the 
original 3D mesh is transformed into a discrete and 
regular representation with a fixed number of volume 
elements (voxels). The process starts creating a 
15x15x15 cm3 cube to contain the relevant facial parts of 
all meshes. The cube size has been selected after 
analyzing the sizes of the faces in the database. 

In order to place a facial mesh into the cube, it has to 
be normalized with respect to the pose. Then, it is 
translated until the pronasale point (nose tip) of the facial 
mesh is placed in the coordinates x=7.5 cm, y=7.5 cm 
and z=15 cm of the cube. Fig. 5 shows an example of 
cube translation to capture the face. In general, the upper 
and lower parts of the facial mesh are located outside the 
cube, which will imply that information of these parts 
will not be captured by the voxel representation. This is 
not relevant since the upper part of the mesh could 
contain hair and the lower part of the facial mesh has 
high variability under facial expressions.  

Once this facial mesh has been placed in the cube, it 
is subdivided into n×n×n equally spaced voxels, where n 
represents the voxel resolution. Fig. 6 presents an 
example in which the cube containing the face is 
subdivided into: (a) 2×2×2 voxels, and (b) and (c) into 
3×3×3 voxels.  This voxel-based representation enables 
us to convert a 3D facial mesh into a binary 
representation. If a voxel contains vertices of the facial 
mesh it is represented by a ‘1’; otherwise, the 
corresponding voxel is represented by a ‘0’. Fig. 6 (d) 
shows a section of the cube occupied by the mesh and 
divided into voxels, and (e) the binary values produced 
by the voxels using a cutting plane defined at y=7.5 cm.  

In this work, we used three voxel resolutions to 
produce the representations of facial meshes: 30×30×30, 
45×45×45 and 55×55×55, respectively. Each one is 
applied to both considered facial mesh resolutions: 1-1 
(original) and 1-4 (one quarter), respectively. 

4.2 Profile Modeling 

Using the previous mechanism to obtain profiles, the 
following five potential types of single profiles (shown 
in Table 1) were identified: 
(1) Horizontal cut at mouth level. This profile is 

obtained by cutting the cube with a horizontal plane 
at y=n/3, being n the length of the cube in voxels. 
This cut captures a very relevant and distinguishable 

       
 
 

Fig. 5. Cube translation to contain the facial mesh using the nose 
tip as reference. 

 



part of the face: the mouth. Nevertheless its main 
drawback is its sensitivity with facial expressions. 

(2) Horizontal cut at the nose level. This profile is 
defined as the plane obtained by a horizontal cut at 
y=n/2. It presents the horizontal profile of the nose.  

(3) Horizontal cut at the eyes level. This cut is obtained 
by the horizontal plane with y=2n/3. This profile 
contains the curve of the eyes and part of the nose.  

(4) Vertical cut at the nose level. This cut is obtained 
by defining a plane with x=n/2.   

(5) Vertical cut at one eye level. This cut is obtained by 
the vertical cut at x=2n/3. It shows the profile of the 
face passing by one eye.  

Horizontal cut at 

mouth level (y=n/3) 
 

Horizontal cut at nose 

level (y=n/2) 
 

Horizontal cut at eye 

level (y=2n/3) 
  

Vertical cut at nose 

level(x=n/2) 
 

Vertical cut at eye level 

(x=2n/3)  

Table 1. Examples of the defined single profiles. 

 
These five profiles have been obtained for each mesh 

using three different voxel resolutions and the two 
considered mesh resolutions(1-1 and 1-4, respectively). 
An example of the horizontal cut at nose level for an 
individual at the considered resolutions is presented in 
Table 2. 
 

 30××××30××××30 45××××45××××45 55××××55××××55 

1-1 

Resolution    

1-4 

Resolution    

Table 2. Examples of horizontal cut at nose level for the 
considered voxel and scanning resolutions. 

 
We have also defined two profile combinations in order 
to experiment multiple-profile modeling approaches. It 
aims at representing each facial mesh by a combination 
of more than one single profile in order to capture more 
relevant information. The combinations proposed (shown 
in Table 3) are:  
(1) Combination of “eyes and nose” profiles. This 

approach models each face with the concatenation of 
two profiles: horizontal cut at the eye level and 
vertical cut at the nose level.  

(2) Set of horizontal cuts between nose and eyes. This 
representation models each face as the concatenation 
of all the horizontal cuts present between y=n/2 and 
y=2n/3, which approximately represents all cuts 
between the forehead and the nose for each 
considered resolution.  

Table 3 shows an example of both multiple profile 
models. For each combination, the considered 
resolutions have been stated in the experiments.  
 
Combination “eyes and nose” 

profiles 
Horizontal cuts between eyes and nose 

 
 
 
 
 

 

 
Table 3. Examples of combination profiles. 

4.3 Depth Map Modeling 

A depth map is a two-dimensional matrix in which the 
value of each component represents the distance from a 
plane to the face. In our case, we have placed the origin 

 

(a) (b) (c) 
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  (d)              (e) 

Fig. 6 (a) 2×2×2 voxel division of the reference cube 
(containing a facial mesh); (b) and (c) 3×3×3 voxel division 
of the rotated cube; (d) voxels (dark grey) containing part of 
a facial mesh, and (e) example of the binary voxel 
representation corresponding to a horizontal section at nose 
level (the contour is represented by the 1-values). 

 
 



plane at the pronasale point to obtain depth maps in 
vertical position, which means that for this point the 
depth is 0. Around the nose region the distance is small, 
while in other face areas the distance increases. We have 
measured this distance using the number of empty voxels 
from the origin plane to the facial mesh. In order to study 
the modeling capabilities of depth maps we have defined 
three types of maps (Table 4):  
 

Full face Upper-half Left-side 

 

 

 

Table 4. Examples of the considered depth maps. 

(1) Full facial depth map. This modeling approach 
presents a matrix containing the distance measured in 
voxels from the vertical origin plane to the 
corresponding point of the face.  

(2) Upper-half facial depth map. Because the mouth 
area is very sensible to facial expressions, modeling a 
face considering only the upper-half of the face can 
be appropriate to obtain more robust models. The 
upper-half of the face is defined by the horizontal cut 
at the pronasale point.  

(3) Left-side facial depth map. The goal of this model 
approach is to eliminate redundant facial information 
due to face symmetry. In theory, both halves of the 
face contain the same information, so only one of 
them should be enough to represent the face.  

Three kinds of depth-maps have been obtained at the 
previously described voxel and mesh resolutions. Table 5 
presents one example of the “upper-half” facial depth-
map obtained for the face of one individual at the 
considered cube resolutions and at 1-1 mesh resolution. 
Shorter distances are visualized by darker greylevels (the 
black colour means a distance of 0 voxels).  

 
 

 30××××30××××30 45××××45××××45 55××××55××××55 

1-1 

Resolution 
   

Table 5. Example of upper-half depth map for the considered 
voxel resolutions at 1-1 mesh resolution. 

5. 3D Face Recognition Experiments 

In this Section, we present the AFR system architecture 
implemented and the results obtained using the proposed 
3D profile and depth-maps. Two matching schemes have 
been tested: Support Vector Machines (SVM) and 
Principal Component Analysis in combination with a 
Euclidean classifier (referred as PCA in Fig. 7). In order 
to test the robustness of our face recognition system, 
experiments have been run in a controlled and in a non-
controlled environment to measure how the non-
controlled conditions affect the recognition rate. 

5.1 Face Recognition Architecture 

The proposed face recognition architecture has four 
stages pre-processing, (2) pose normalization, (3) 
representation of the facial mesh using voxels, producing 
the set of profile models previously presented, and (4) 
classification or matching. In the face modeling (off-line) 
the three first steps are applied. In the matching, the 
system is trained and tested for the two considered types 
of classifiers. Fig. 7 shows this generic architecture. 

5.1.1 Face Pre-processing 

A pre-processing stage to remove the regions 
corresponding to the neck, the ears and the hair (which 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

 

 

 

Fig. 7. Architecture of our 3D facial recognition system with two generic matching schemes. 
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are not relevant for 3D recognition) has been manually 
applied. After that, the impulsive noise present in the 
meshes (characterized by extreme values of z randomly 
distributed through the mesh) has been attenuated 
automatically by the application of a 3×3 median filter. 
Also, a 3×3 mean filter has been applied to smooth the z 
coordinates of the image. No interaction to remove 
another kind of noise has been done. Fig. 8 shows an 
example of noise filtering and smoothing. Although the 
noise filtering is not perfect, the noise attenuation 
obtained is acceptable for processing our mesh images. 
 

                (a)                               (b) (c) 
Fig. 8. (a)(b) Noisy mesh from two different viewpoints; 
(c) Mesh after applying noise filtering and smoothing. 

5.1.2 Pose Normalization. 

The goal of pose normalization is to have all the facial 
meshes with the same position and orientation in the 3D 
space. Scale normalization is not computed since the 
scale of the 3D images is real, and it characterizes the 
differences among individuals. In order to normalize 
each 3D mesh, it is multiplied by a roto-translational 
matrix that rotates and translates the original mesh to 
adjust it to a reference face selected from the database (a 
frontal neutral image). This matrix is computed for each 
image using a determined set of 3D feature points that 
have been extracted from the facial mesh to be 
normalized. The same set of points extracted from the 
reference face. Both sets of corresponding 3D feature 
points define an overdetermined system of linear 
equations of the geometrical transforms that has been 
approximated by the iterative least-squares method. 
The set of points first used were the mass centres of six 
homogeneous regions according to the local shape 
computed using the signs of the mean and Gaussian 
curvatures, using the HK algorithm (Trucco and Verri, 
1998). The selected regions are shown in Fig. 9. Region 
1 (elliptical convex points of the nose tip), Region 3 
(hyperbolic points of the upper-nose bridge) and Regions 
4-5 (elliptical concave points of the inner corner of the 
eyes cavities) were located after the point classification 
using the threshold curvature values (assigning 0 
curvature value when this is lower than a threshold). 
Regions 6-7 (elliptical convex points of the eyes) were 
obtained from the point classification of the point shape 
without applying the curvature threshold process. These 
normalization regions and other segmented ones are 
described with more detail in (Moreno et al., 2006).  

 
  

R3 

R4,R5 

R1 

R6 
R7 

 
(a) (b) (c) 

Fig. 9. Regions of an image whose mass centres have been used 
for pose normalization from (a) the curvature threshold image 
and from (b) the non threshold image; c) mass centres of these 
regions. 
 

The selected points are invariant to geometrical 
transforms. The regions are present in most of the face 
images and they are scarcely affected by facial 
expressions. A first normalization process using these six 
points was applied for the images in which at least three 
of them were located. It let us to normalize the 95.5% of 
the images (408 images from the set of 427 ones). The 
remaining 4.5% of images (a total of 19) were 
automatically normalized by using another set of nine 
points located by using a second normalization method. 
These nine points correspond to landmarks (pronasale, 
left and right entocanthions, left and right ectocanthions, 
nasion, subnasale, and finally left and right alares). These 
points have been located by using another method based 
on differential properties of the surface (Moreno et al., 
2002). The use of both point location methods made 
possible to automatically normalize the whole 427 
images. Table 6 shows the average distance in mm. 
between corresponding feature points of each normalized 
view of each individual with these points of the reference 
face, using the second normalization method for the 
complete database. Fig. 10 shows the average percentage 
of the coincident 1-labeled voxels between frontal and 
another different view of the same individual averaged 
over all individuals of the database per each view, using 
the second normalization method for the complete 
database. First normalization method has to provide 
better results because the curvature used for the region 
extraction is invariant under geometrical transforms. 

 

Looking 
down 

Looking 
up 

Frontal 
1st 

Frontal 
2nd 

Random 
gesture 

Laugh Smile 

7.0 5.1 4.7 4.7 4.9 4.9 4.8 
Table 6. Average distances in mm. between corresponding 
feature points of each normalized view of each individual to 
these points of the reference face. 
 
 
 
 
 
 
 



 

 

 
 
 
 

 

5.1.3 Voxel Representation and Profile Modeling 

Once all facial meshes have the same pose they can be 
transformed into a voxel representation using the 
procedure explained in Section 4.1. Therefore, all the 
facial meshes are represented by constant-length vectors. 
The length of the pattern vectors depends on the voxel 
resolution used to divide the cube. Each face produces a 
set of vectors defined by the profiles and depth maps 
(presented in subsections 4.2 and 4.3). Different voxel 
and scanning resolutions have been considered to test the 
recognition capabilities of the presented 3D face surface 
models. 

5.1.4 Matching Schemes 

Once the feature vectors are obtained from the facial 
meshes, a recognition system is trained to classify them. 
We have implemented recognition systems using two 
matching schemes that have produced very good results 
for recognition applications: Principal Component 
Analysis with a Euclidean Classifier (PCA) and Support 
Vector Machines (SVM). 

PCA is applied for reducing the dimensionality of 
the feature vectors in order to obtain a more compact 
representation (Duda, Hart and Stork, 2000). This 
compressed representation is the input for a pattern 
classifier, typically a distance based classifier.  

SVM is a classification technique derived from 
Statistical Learning Theory that was originally presented 
in Boser, Guyon and Vapnik (1992). The problem that 
SVM tries to solve is to find an optimal hyperplane that 
correctly classifies data points and separates the points of 
two classes as much as possible. One important 
component that defines a SVM classification system is 
the type of kernel. Intuitively, a kernel should represent 
the notion of similarity between any two individuals of 
the database. The most common kernels are linear, 
polynomial and Gaussian. A kernel can also be 
specifically designed for a particular problem.  The main 
advantages of SVM, when used for image classification 
problems, are: (1) ability to work with high dimensional 
data; (2) high generalization performance without the 
need to add a-priori knowledge, even when the 

dimension of the input space is very high; (3) a 
relationship between the structure (the support vectors) 
and the classification tasks; and (4) optimal separation 
surfaces between classes. Bynm (2003) presents an 
extensive review of SVM for pattern recognition. 
Excellent introductions to SVM can be found in Vapnik 
(1998), and Cristianini and Shawe-Taylor (2000). 

The proposed matching schemes have been 
implemented using a PCA distribution (Romdhani, 1996) 
and the SVMTorch software (Collobert and Bengio, 
2002), respectively. The PCA output vectors were 
classified using a Euclidean distance measure to identify 
each test face. The kernel included to run all the SVM 
experiments was a Gaussian kernel. The reason for 
choosing this kernel is that it has been widely used with 
very good results for pattern recognition applications 
(Bynm, 2003).  

5.2 Face Recognition Experiments in a Non-

Controlled Environment 

The goal of this approach is to test how the proposed 
profile models work in real 3D recognition 
environments, where users have a certain degree of 
freedom regarding facial gestures and head rotations. 
The non-controlled environment has been built by taking 
five randomly selected facial meshes (of the total of 
seven per each individual) to train the classifier and the 
other two remaining images for testing purposes. 
Therefore, a total of 305 profile vectors were used for 
training and 122 for testing. The following subsections 
the most significant recognition rates obtained by the 
different models at the considered voxel and scanning 
resolutions.  

5.2.1 Single Profile Modeling 
 
Single profile modeling groups five types of face 
representations presented at Table 1: (1) horizontal cut at 
the mouth level, (2) horizontal cut at the nose base level, 
(3) horizontal cut at the eyes level, (4) vertical cut at the 
nose level and (5) vertical cut at one eye level.  

The horizontal cut at mouth level did not produce 
good results in non-controlled environments due to the 
variations within the same individual caused by gestures. 
The horizontal cut at the nose base level did not 
produced relevant results. We think this is caused by the 
produced occlusions in the base of the nose when the 
head is lightly rotated downwards and the reconstructed 
error produced by the scanner in the filling-holes stage. 
The horizontal cut at eye level improves the two previous 
profiles achieving up to 60% correct recognition rate for 
the 1-1 mesh resolution and for the 45×45×45 cube 
resolution. We think that this model could provide better 
results at higher cube resolutions if a Bresenham 
algorithm were applied to connect the 1-voxels in this 
profile model, but it also would increase the cost in time 
and memory. 

Fig. 10. Average percentage of the coincident 1-labeled voxels 
between frontal and other different view of the same subject, for 
each view and averaged by all individuals of the database. 
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The recognition results obtained with vertical cut, at 
the eye level did not produce good results, and the 
vertical cut at the nose level also achieved up to 60% 
correct recognition rate. 

5.2.2 Multiple Profile Models 
 
Multiple profile models were designed to capture the 
most discriminating information from each facial mesh 
in order to improve recognition rate. Two types of 
multiple profiles are proposed: (1) combination of eye 
and nose profiles, and (2) combination of all horizontal 
cuts between nose and eyes. These two approaches 
include nose and eyes, which are the facial features less 
affected by facial expressions and gestures. Figs. 11 and 
12 present the achieved recognition rates for both 
multiple priles using each considered matching scheme, 
voxel and scanning resolutions. 

The combination of “eyes and nose” correctly 
identified 77.86% of the considered 3D test faces, which 
means an important increase when compared to the 50% 
and 60% recognition rates achieved by each one of these 
two profiles independently. Also, in this case, as 
observed in Fig. 11, the 1-1 resolution provided much 
better results than the 1-4 resolution. The combination of 
all horizontal cuts between nose and eyes (Fig. 12) did 
not really increased recognition rates when compared 
with the previous two-profile combination, achieving a 
77.05% of recogntition success. Nevertheless, in this 
case, we faced the difficulty of training a SVM classifier 
using voxel resolution higher than 30×30×30 due to size 
limitations imposed by SVMTorch software files (for 
example, a 45×45×45 voxel resolution produced files of  
about 16.4 Mbytes per face pattern). 
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Fig. 11. Best recognition rates for the combination of “eyes and 

nose” profile. 

5.2.3 Depth Map Modeling  
 
Depth map modeling encompasses three surface models: (1) 
full facial depth map, (2) upper-half facial depth map and (3) 
left-side facial depth map. Table 7 presents the best 
recognition rates obtained for each model. Some references 
of 3D face recognition used PCA and depth maps 
(Tsalakanidou et al., 2003; Chang et al., 2003) but in these 
approaches no facial expressions were considered and the 
capture environment was not flexible.  
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Fig. 12. Correct recognition rate for all the horizontal cuts 
between nose and eyes profile. 

 
The use of full facial depth maps did not produce good 
recognition results, achieving a maximum of 58,2% 
correct recognition rate. In this approach SVM worked 
much better that PCA as matching scheme.  Upper-half 
facial depth maps produced better results than left-side 
facial depth maps, because the mouth area is very 
sensible to facial gestures. In general, SVM worked 
much better than PCA, and the resolution 1-1 also 
produced better results than the 1-4 resolution. This 
lower resolution negatively affected to the recognition 
results by using the best profiles. These experiments 
confirm that the proposed multiple profiles provide much 
better results than depth maps for the same resolution. 
Other works have proved that depth maps improve these 
recognition results for higher resolutions. Lee (2005) 
obtained a 73.77% of recognition rate using depth maps 
extracted from the 3D meshes of GavabDB and the PCA 
scheme. 
 

Full-face 58,2% 

Upper-half 54,1% 

Left-side 44,2% 

Table 7. Recognition rates using facial depth maps in a non-
controlled environment at 55×55×55 and 1-1 voxel and 

scanning resolutions respectively using SVM. 

5.3 Face Recognition Experiments in a Controlled 

Environment 

The goal of this experiment was to test how the variability 
of faces affects the recognition rate in non-controlled 
environments compared to controlled environments. In 
other words, how the proposed 3D facial profile models 
are robust regarding facial gestures and rotations. For this 
aim, we assumed a controlled environment in which one 
of the frontal and neutral images of each subject were part 
of the training set and the other frontal and neutral images 
were used for the tests. Because we worked with 3D 
meshes without texture, a controlled environment did not 
mean any restriction on the illumination conditions. Tests 
were run for the profile models that provided better 
results in the non-controlled environment (i.e. 
combination of eyes and nose profiles). Table 8 shows in 



decreasing order the recognition rates achieved with the 
proposed profile models for the different combinations of 
matching schemes, voxel and scanning resolutions.  

It can be observed that recognition rates under 
controlled conditions improved on average a 10% over 
the non-controlled environment, thus obtaining a best 
recognition rate of about 90% with the PCA matching 
schema and an 88% with SVM. This 10% difference 
between the controlled and the non-controlled 
environment shows that the combination of “eyes and 
nose” profile model is robust since it copes with the 
variability regarding face position and facial gestures. 

 
Matching Scheme Recognition Rate (%) 

PCA 45 1-1 90.16 
SVM 45 1-1 88.52 
SVM 55 1-1 88.52 
SVM 30 1-1 86.89 
PCA 55 1-1 86.88 
PCA 30 1-1 80.32 
SVM 30 1-4 78.69 
SVM 45 1-4 75.41 
SVM 55 1-4 73.77 
PCA 45 1-4 72.13 
PCA 30 1-4 65.57 

 
Table 8. Best recognition rates for the combination of “eyes 

and nose” profile in a controlled environment. 

6. Conclusion and Discussion 

3D Automatic Face Recognition (AFR) systems have 
attracted a lot of attention in recent years due to the 
interesting applications derived from it and to the 
proliferation and increasing performance of 3D scanners.  
Such 3D face recognition systems are applicable if they 
are robust against the variations in position and gestures 
that a subject can produce while he/she is interacting 
with the system. Some of the problems and limitations of 
3D face recognition systems are: (1) there are not many 
systems that consider the face variability in position and 
facial expressions that real applications demand, and (2) 
the lack of 3D face databases with significant variability 
in pose and gestures.  

This paper has proposed and tested a set of 3D face 
profile models to represent individuals for recognition 
purposes. In general, for both matching techniques used, 
the best results obtained in non-controlled environments 
were using a combination of profiles (eye and nose), 
achieving a 77.86% recognition rate. Taking into account 
the variability in pose and gesture of the images used and 
the fact that there is just a 10% difference of correct 
recognition rate when compared to a controlled 
environment, these results show that the proposed 3D 
face surface modeling approaches can be suitable for 
practical non-controlled recognition applications. The 
worst results were obtained when using the mouth region 
due to its high variability regarding facial expressions 
and/or gestures. Other conclusion obtained from this 
work is that the proposed profile combinations provide 

better recognition results than the corresponding depth 
maps at the same resolutions. 

We have also shown that this model is, to a large 
extent, robust against variations in pose and facial 
gestures. The system was tested with two matching 
schemes: SVM, and PCA combined with a Euclidean 
distance classifier. Experimental results demonstrated 
that while there is not a significant difference in the 
recognition rates achieved, and that these differences 
were important regarding training time in favour of 
SVM. On average, when using the same type of model, 
training the recognition system on the same computer 
took about four times less when using SVM. 

The results pointed out that some of the proposed 
multiple-profile models are also robust against variations 
in illumination, gestures and facial expressions.  
In order to solve the lack of databases to test 3D face 

recognition systems under real-world environments, this 
paper presents the GavabDB as a facial database that 
captures a high degree of variability in gestures and pose.  

In our approach, 3D facial meshes from the same 
person can have a different facial area surface. This is 
caused by auto-occlusions produced in the borders of the 
mesh. We consider that these variations in the images of 
the same individual deeply affect recognition rates. As 
future work we plan to implement a 3D face recognition 
system focused only on a predetermined central area of 
the face in order to avoid occluded areas and also to 
ensure that the facial meshes of the same individual have 
the same size. This will probably improve the 
recognition rates of the proposed 3D face recognition 
models.  

We are compiling another database of new 
individuals for testing the system with unknown 
individuals. In this work we have put the emphasis in the 
comparison of the discrimination power of different 
profile-based and depth-map features to be used as 
descriptors in a 3D face recognition system.  

Another future work is the experimentation with 
distances between profiles and cuts in the depth map as 
features, instead of using binary data. We think that some 
proposed models could provide better results for higher 
cube resolutions if a Bresenham algorithm were applied 
to connect the 1-voxels in our profile models. 
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