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Abstract 
Individuals generate vast amounts of geolocated content through the use of mobile social media 

applications. In this context, Twitter has become an important sensor of the interactions between 

individuals and their environment. Building on this idea, this paper proposes the use of geolocated tweets 

as a complementary source of information for urban planning applications, focusing on the 

characterization of land use. The proposed technique uses unsupervised learning and automatically 

determines land uses in urban areas by clustering geographical regions with similar tweeting activity 

patterns. Three case studies are presented and validated for Manhattan (NYC), London (UK) and Madrid 

(Spain) using Twitter activity and land use information provided by the city planning departments. 

Results indicate that geolocated tweets can be used as a powerful data source for urban planning 

applications. 
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1. Introduction 
 

Urban planning is a process that focuses on the control and on the design of urban environments in order 

to increase the well being of citizens. An important concern in urban planning is the characterization of 

urban land use, such as residential, industrial or parks. How each part of an urban landscape is used, is 

mainly determined by zoning regulations. In the context of urban planning, urban zoning is defined as the 

designation of permitted uses of land based on mapped zones which separate one set of land uses from 

another (for example residential areas from industrial areas). One of the problems of zoning is to actually 

evaluate to which extent the areas are being used as required or planned, because the collection of data 

has to be done on site. Such information is usually gathered through direct observation or using 

questionnaires that attempt to capture how citizens interact with their urban environment. This traditional 

approach has some limitations such as the resiliency of citizens to provide answers or the cost of running 

questionnaires, which highly limits the frequency with which the information is captured. Alternative 

approaches such as GIS (Geographic Information Systems) (Yin et al., 2011) provide satellite imagery 

that might reveal some types of land use information through image processing techniques. However, 

such techniques fail to provide real time information as images are not captured frequently and the land 

uses that can be identified do not cover the variety of land uses present in a city. 

 

With the increasing capabilities of mobile devices, individuals leave behind footprints of their interaction 

with urban environments. In this context, cell phones have become one of the main sensors of human 

behavior, thanks, among others, to their growing penetration and wealth of social applications. As a 

result, new research areas, such as urban computing and smart cities, focus on improving the quality of 

life in an urban environment by understanding the city dynamics through the data provided by ubiquitous 

infrastructures and technologies. New data sources (including GPS, Bluetooth, WiFi hotspots, geo-tagged 

resources, cell phone traces, etc.) are becoming more relevant for urban planning applications such as 

transport planning (Frias-Martinez et al., 2012b), traffic estimation (Caceres et al., 2012) or social studies 

(Oloritun et al., 2013).  

 

In the literature we can find some approaches that use different pervasive infrastructures for the automatic 

identification of land uses such as GPS (Yuan et al. 2012), cell phone traces (Soto et al., 2011) or social 

media applications such as Foursquare (Noulas et al., 2011). In general these approaches tend to focus on 

specific land uses, on a specific city, and they lack a quantitative validation of the results. Also, GPS and 

cell phone traces are difficult to obtain due to privacy concerns, and in general, the location information 

available in social media applications is limited, with the exception of Twitter.  



 

In this paper we propose to use Twitter geolocated data for the automatic identification of land uses. The 

proposed approach exclusively makes use of spatial (geo-tagged) and temporal (time-stamped) 

information of tweets, without accessing personal details or the content of the user-generated information. 

By doing so, it preserves privacy and can potentially be applied and/or complemented with any other 

mobile social media dataset with geolocation information. Our novel approach is designed to identify all 

possible land uses using spectral clustering, it is validated using real land use data provided by city 

planning departments and is tested in three different urban environments: Manhattan (NYC), London 

(UK) and Madrid (Spain). 

 

 

 

2. Related Work 
 

Our work arises as a combination of two research areas mainly crowd modeling and urban computing for 

urban planning. Different authors have used a variety of user-generated content services for implementing 

crowd behavior models. Wakamiya et al. (2011) and Fujisaka et al. (2010) studied how to exploit 

geolocated tweets and the semantics of its content to interpret individual and crowd behavior i.e., how 

individuals and groups of people move across geographical areas. They propose models of aggregation 

and dispersion as a proxy to understand the bursty nature of human mobility. Similarly, Kinsella et al. 

(2011) used geolocated tweets, together with their content, to create geographical models at varying 

levels of granularity (from zip codes to countries). The authors use these models to predict both the 

location of the tweet and the user based on location changes.  

 

Recently, in the area of urban computing for urban planning we can find a variety of results using 

geolocated information to model land use. The approaches can be divided according to its source of 

information: (1) location-based social networks (LBSN) traces from Foursquare or Twitter; (2) call detail 

records (CDRs) from cell-phones; and (3) GPS traces. The three data sources represent a compromise 

between granularity and data generality: while GPS data has longitude-latitude information every couple 

of seconds for usually a very limited number of individuals (usually less than one hundred); CDRs have 

location information for millions of individuals at a tower level only when an interaction (call or SMS) 

takes place. LBSN offer an intermediate solution where location information is in the form of longitude-

latitude for an intermediate number of individuals (usually hundred of thousands). 

 

Regarding LBSN, Noulas et al. (2011) have used the geolocated information provided by Foursquare to 

model crowd activity patterns in London and New York City using spectral clustering. For that purpose, 

the authors characterize the activity patterns identified by the clusters using the predefined Foursquare 

categories that give an indication of the type of check-in location (restaurants, academic, etc.). As such, 

this approach gives an approximated understanding of land use. Frias-Martinez et al. (2012), and Neuhaus 

(2011) presented preliminary results on using Twitter for characterizing urban landscapes. Both studies 

showed that geolocated tweets potentially contain enough information to identify some land uses, 

although with some limitations. In the case of Frias-Martinez et al. (2012) the main limitations arise due 

to the problems of using k-means as clustering technique to classify the terrain. In a related work 

Cranshaw et al. (2012) presents a new clustering model designed to study land use and social dynamics 

on a large scale using Foursquare. The results are validated with personal interviews that confirm the 

clusters identified. 

 

As for CDRs, Calabrese et al. (2011) used cell-phone records from Rome to study the relation between 

phone activity and commercial land uses using Principal Component Analysis (PCA) to identify the 

dominant pattern in each area. The results are qualitatively presented and validated and no land use 

information is actually used.  A similar study was done by Ratti et al. (2006) in Milan. Soto et al. (2011) 

used the tower activity to characterize and cluster similar location patterns and implemented a qualitative 

evaluation of the results. Toole et al. (2012) also used activity patterns to cluster land uses using a random 

forest approach in Boston.  

 

GPS data sources are not as commonly used for land use purposes due to the privacy concerns. In general 

the traces available come from public transport infrastructure such as buses and taxis, which limits its 

generalization. Yuan et al. (2012) present an initial study using GPS traces from taxis to derive individual 

mobility and identify regions of different functions using a predefined map of the points of interest of 

Beijing, i.e. information of the city was used to derive land uses. 



 

In general, the main limitations of the previous approaches are: (1) lack of a formal validation of the 

results using independent land use data; (2) the studies are presented just for one city, somehow limiting 

the potential generality of the proposed approach; (3) some data sources (mainly cell phone traces) have 

strong privacy limitations and (3) in some cases supervised approaches are used, which implies the need 

of having initial knowledge of the city to derive land uses. Our approach overcomes such limitations by 

using an unsupervised technique for land use classification that is based on an intermediate data source 

(both in the sense of number of individuals and privacy) such as Twitter. The approach is validated with 

external sources and its generality is tested using three cities as examples. 

 

 

 

3. Sensing Urban Land Uses using Twitter 
 
The technique we propose for the automatic identification of urban land uses from geolocated tweets has 

two steps: (1) land segmentation and (2) land use detection. Note that the land uses (such as residential, 

industrial, parks, etc.) are not defined before hand but identified by the unsupervised learning technique. 

 

3.1. Land Segmentation with Geolocated Data 
Given that we want to sense land uses in different urban regions, the first step consists on partitioning the 

land into different segments, which can then be characterized by its usage pattern. The partitioning of the 

area considered has to preserve the topological properties of the geolocated tweets, while respecting the 

actual shape of the geographical area under study. We approached this problem using Self-Organizing 

Maps (SOM) (Kohonen, 1990).  

 

SOM is a type of neural network trained using unsupervised learning that produces a two-dimensional 

representation of the training samples. It consists of nodes each one having a weight vector of the same 

dimension as the input data and a position in the two-dimensional space.  Usually the initial weight of the 

vectors are random values and the initial arrangement of the nodes is a rectangular grid. The procedure 

for placing a vector from the input data onto the map is to find the node with the smallest distance metric 

to the data space vector, which in turn updates the weight and the position of the neuron. In our case, the 

input data are the latitude & longitude pairs that represent the geolocated tweets over a period of time for 

a specific urban area. As a result, we use a SOM to build a map that segments the urban land into 

geographical areas with different concentrations of tweets.  

 

Our SOM consists of a collection of N neurons organized in a rectangular grid [p, q], with N = p•q. 

Since we can choose any initial size [p, q] for the map, our method explores different map sizes and 

selects as the best land segmentation map the topology that minimizes the Davies-Bouldin clustering 

index (Davis et al., 1979). The DB index is used to evaluate clustering algorithms, where the validation of 

how well the clustering has been done is made using quantities and features inherent to the dataset. It is 

formally defined as:  
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Where N is the number of clusters (neurons), wi and wj represent the position in the two dimensional space 

of the SOM neurons i and j, and σi and σj represent the standard deviation of the elements (geolocated 

tweets) included in each cluster. The DB index is chosen for land segmentation because the partition with 

minimum value will minimize the maximum sum of a pair of standard deviations σi and σj, i≠j and will 

maximize the distance between cluster representatives (neurons), ensuring that even the most disperse 

clusters concentrate its points (geolocated tweets) inside a compact cluster.  

 

As a result of the process, we obtain a map where each neuron represents a pointer to a region with a high 

density of tweets. Additionally, areas with larger concentrations of tweets will have larger numbers of 

neurons geographically located nearby. Finally, Voronoi tessellation (Aurenhammer, 1991) is applied 

over the location of the neurons in order to compute the land segments that each neuron represents. These 

land segments are used as the elements for the characterization of land use. 

 



3.2. Unsupervised Learning for Detecting Urban Land Uses 
We characterize each land segment by its average tweeting activity which will then be used to identify 

common land uses. For each land segment s, a tweet-activity vector Xs representing the average tweeting 

behavior is built as: 

 

1. An activity vector xs,n for land segment s is built for each day n =1, ..., d in the dataset. 

 

2. Each day n in the activity vector contains 72 components xs,n (t), t = 1, ..., 72 where each one represents 

the number of tweets generated in land segment s during a 20-minute interval t in day n. 

 

3. An average activity vector for each land segment s is computed for both weekdays Xs,wkd and weekends 

Xs,wkn, each one representing the average number of tweets (during the n days) in land segment s during 

the corresponding time period t, just considering weekdays (Monday through Friday) in the first case and 

weekends (Saturday and Sunday) in the second: 
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4. The final activity vector is represented as the concatenation of weekday and weekend average activity 

vectors Xs = {Xs,wkd,Xs,wkn} and is normalized as: 
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After this process, each land segment s is represented by a unique activity vector Xs with 144 elements 

representing the average weekday and weekend tweeting activity computed in 20-minute timeslots. These 

activity vectors are used to automatically identify and characterize urban land uses using clustering. We 

posit that land use can be derived from a careful analysis of the tweeting behaviors in each cluster, based 

on its activity vector as well as on its physical layout in the city.  

 

From the variety of clustering techniques available that can be potentially applied to our land 

segmentation problem (k-means, hierarchical methods, decision trees, Fuzzy Clustering, etc.) we have 

selected spectral clustering (Shi et al., 2000; Von Luxburg 2007). Spectral clustering has become 

increasingly popular due to its advantages, including that no assumptions about the form of the clusters is 

made (as opposed to k-means for example); that is able to manage large dimensional datasets by using 

dimensionality reduction; that it is easy to implement using standard linear algebra; and that it obtains 

good clustering results with a low computational cost. Also it has already been used with success in 

related urban computing applications, such as in Noulas et al. (2011) to divide communities. 

 

Spectral clustering first requires the number k of clusters to construct, and a similarity matrix S that 

represents the pair wise similarities si,j=s(Xi, Xj) of all elements. In our context Xi and Xj represent the 

tweeting activity of each one of the land segments previously obtained. The similarity si,j of two vectors 

Xi and Xj is measured as the cosine similarity: 
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Cosine similarity values range from -1 implying exactly opposite to 1 meaning exactly the same. The 

algorithm treats the data clustering problem as a graph partitioning problem, and as such, the first step is 

to build a similarity graph G = (V, E). Each vertex vi represents a data point xi and two vertices are 

connected by an edge ei,j if the similarity si,j is positive; si,j>0. Two matrices are then created, a weighted 

adjacency matrix W (with the values of si,j>0) and a degree matrix D. In this context, clustering can be 



reformulated as finding a partition of D such that the edges between different groups have very low 

weights and the edges within a group have high weights as defined in W. 

 

The simplest version of the algorithm performs first a dimensionality reduction and then applies a 

clustering algorithm, typically k-means. It starts by using the degree matrix D and the weight matrix W to 

construct a Laplacian matrix L as (Chung, 1997; Mohar 1997): 

 

L D W= −  (5) 

 

After that, a matrix U is built containing as columns the first k eigenvectors of L. Then, each one of the 

rows of U is clustered into k clusters using k-means (Hartigan et al., 1979), which outputs the clusters 

identified with its corresponding elements. 

 

Regarding the number of clusters k, which has to be given as an input, the eigengap detection technique is 

specially suited (Luxburg, 2007). With this approach the number of clusters k is defined by the rank of the 

eigenvalues where there is the largest difference in the value of the eigenvalues of the Laplacian matrix 

arranged in increasing order. 

 

By applying spectral clustering to our problem, we obtain as output k clusters each one containing the set 

of activity vectors of the land segments included in each clusters. In order to analyze the type of land 

associated to each cluster, we compute an average activity vector that represents the tweeting activity of 

each cluster. Finally, we hypothesize the land use for each cluster based on its tweeting activity and its 

distribution across the urban environment under study. 

 
 

4. Evaluation of Land Uses 
 

We present an evaluation of our land use detection method for three metropolitan areas: Manhattan 

(NYC), London (UK) and Madrid (Spain). We have selected these three cities because they show 

different densities of Twitter activity computed as the number of daily tweets per square kilometer in the 

urban perimeter considered: Manhattan has the highest Twitter density (84.13 tweets/km2) followed by 

London with about half of that (42.51 tweets/km2) and Madrid with a density of 10.88 tweets per square 

kilometer. As such, these three cities represent different cultural and behavioral Twitter attitudes useful to 

evaluate the limits of our approach. The objective of this evaluation is twofold: (1) to analyze to which 

extent the land use identification algorithm detects different types of land uses and (2) to understand the 

impact of the density of tweets on the accuracy of the method proposed. For that purpose we apply the 

algorithm on Twitter datasets of each one of the three cities considered and draw hypothesis regarding 

land uses based on both tweeting activity and location. To validate our results, we contrast our clusters 

and land uses hypotheses against real land use information collected by the corresponding city planning 

department. 

 

4.1 Twitter Datasets 
Twitter users are allowed to tag tweets with their current geospatial location. Specifically, users can set 

their geographical location by specifying a city or region or by allowing Twitter to track their GPS 

longitude and latitude coordinates. When a new tweet is produced, Twitter records the geographical 

information of the user at that moment, along with a variety of other metadata. Given that we want to 

model land use within an urban environment, we require highly granular geolocations. Thus, we only 

collect tweets whose location is automatically recorded by Twitter through the GPS and not self-reported 

by the user.  

 

We used the Twitter Streaming API (Twitter, 2013) to gather geolocalized tweets in near real-time. The 

streaming API enables a high-throughput stream to be established with Twitter by which a large volume 

of public statuses of tweets can be gathered. Specifically, the Twitter steaming API provides a sample of 

all tweet public statuses, currently about one percent of the full Firehose set of tweets. Our final Twitter 

dataset consists of 49 days (seven weeks) of geolocated tweets worldwide from October 25th to 

December 12th, 2010. The geographical area for London is defined by the area defined by what would 

have been Ringway 1*. As for Madrid, we roughly consider the urban area comprised within the M − 30 

highway. 

                                                 
* http://www.cbrd.co.uk/histories/ringways/map/google-download.shtml 



 

4.2 Land Segmentation and Land Use Clustering 
Our method trains a SOM with the set of geolocated tweets to divide the urban area under study into 

different land segments s characterized by their tweeting activity vector Xs. Given the different 

geographies of the cities under study, we evaluated N in the range N = [10,..., 300] with N defined as: 

 

 with , 1 and ,N p q p q p q= ⋅ > ∈�  (6) 

 

The values of p and q define the number of neurons considered in each axis: p in the north-south axis and 

q in the east-west axis (we leave out the cases where N is a prime number). To adjust the neurons to the 

shape of each city, we only consider cases in which p > q for Manhattan and Madrid and p < q for 

London (Manhattan and Madrid have a longer north-south axis and London has a longer east-west axis). 

For example, in Manhattan N = 10 would define an initial grid with p = 5 and q = 2 and N = 12 would 

generate (p = 6, q = 2) and (p = 4, q = 3).  

 

Due to the randomized nature of the SOM training stage, 100 SOMs are trained for each city and each 

pair (p, q) with N = p · q є [10,..., 300] and their average DB index is computed. The minimum DB index 

was associated to N = 64 for Manhattan with p = 16 and q = 4; N = 168 for London with p = 12 and q = 

14; and finally N = 91 for Madrid with p = 7 and q = 13.  

 

As an example, Figure 1 shows the land segmentation for Manhattan. We observe that the Midtown area, 

where the best part of the tweets are geolocated (as shown in Figure 1(a)), shows a high density of 

neurons; whereas the north of Manhattan, with a scarce number of tweets, has a reduced number of 

neurons. Finally, the land segmentation is computed by applying Voronoi tessellation (Aurenhammer, 

1991) to each SOM centroid in the two-dimensional space as shown in Figure 1(c). Notice that areas with 

larger polygons represent areas with reduced Twitter activity. 

 

Each one of the land segments identified in Manhattan, London and Madrid is characterized by its Twitter 

activity vector Xs which has 144 components; the first 72 describe the tweeting activity during an average 

weekday and the last 72 the activity during and average weekend day. Note that the number of Xs vectors 

for each city is given by the optimal number of SOM neurons identified in each case (64 for Manhattan, 

168 for London and 91 for Madrid). Our method uses the set of Xs vectors to identify different land uses 

for each city identifying clusters of similar normalized activity using spectral clustering; i.e., the 

similarity graph G is build in each case with the set of corresponding Xs vectors. In order to identify the 

number of clusters k, we followed the eigenvector detection approach. As a result, the best number of 

land segment clusters is k = 4 for Manhattan and Madrid, and k = 5 for London. Table 1 summarizes for 

each city the parameters of each urban environment. 

 

In order to understand the types of land uses identified by these clusters, we analyze the class 

representatives for each cluster together with its geographical distribution over the city map. A combined 

analysis can be used to provide a hypothesis about the potential types of land uses. Figure 2 presents the 

class representatives for each one of the clusters identified across the three cities. Each representative 

(behavioral signature) is computed as the average number of hourly tweets and is normalized per cluster 

and per city. For analytical purposes, we group the signatures across cities by Euclidean similarity. We 

hypothesize that signatures that share similar shapes across cities represent comparable land use types. 

 

We observe that the activity vectors in Cluster 1 are generally characterized by a larger tweeting activity 

during weekdays than weekends (see Figure 2(a)). During weekdays the highest tweeting activity is 

reached at around 9:30PM, 13:00PM and 8:30PM for Manhattan, which might be associated to the times 

at which people typically get to work, go for lunch, and leave work. The city of London shows similar 

peaks but slightly shifted in time. In the case of Madrid, the signature is shifted even more, suggesting 

that working hours might happen a little bit later during the day. The peak of the tweeting activity during 

the weekends is reduced by approximately 40% when compared to weekdays. In terms of geolocation of 

the clusters, these cover, among others, areas like Battery Park or Wall Street in Manhattan (see Figure 

3), the City and Canary Warf in London (see Figure 5) and the surroundings of Castellana and the area of 

AZCA in Madrid (see Figure 4), all areas heavily associated with business/office activities. For these 

reasons, we hypothesize that the geographical area covered by this cluster represents Business areas in 

Manhattan, London and Madrid. 

 



Cluster 2 shows a large difference between weekend and weekday activity, in fact, the signature is 

almost doubled in volume (see Figure 2(b)). During weekends, tweeting activity increases until the 

afternoon, and constantly decreases after that. Geographically, these clusters cover regions like Central 

Park and nearby museums in Manhattan (see Figure 3), Hyde Park or Regents Park in London (see 

Figure 5) and El Retiro Park and Casa de Campo Recreational Park in Madrid (see Figure 4). Also 

included are heavily touristic areas, like Sol and the Flea Market of El Rastro in Madrid, or the London 

Eye, Buckingham Palace and Covent Garden in London. Thus, we hypothesize that this cluster can be 

associated to Leisure or Weekend activities since users are active mostly during the weekends. However, 

we believe that it does not represent weekend nightlife since the tweeting activity highly decreases after 

16:00PM during the weekends.  

 

On the other hand, Cluster 3 is associated to very large activity peaks at night (see Figure 2(c)). These 

peaks happen at around 20:00-21:00PM during weekdays and between 00:00-06:00AM during the 

weekends. We observe that the peaks happen earlier in London and Manhattan while a little bit later in 

Madrid suggesting that nightlife might continue until late hours in this city. Studying the physical layout 

of these clusters on the city maps, we observe that they cover areas like the East Village in Manhattan; the 

West End in London and Malasaña/Chueca and Alonso Martinez in Madrid (see Figure 4), areas 

associated with restaurants, pubs and discos. All these elements suggest that this cluster might represent 

nightlife activities. 

 

Cluster 4 shows a signature evenly divided between weekends and weekdays, where, during weekdays, 

there is a peak of activity in the afternoon between 6pm and 8pm depending on the urban area considered 

(6pm for Manhattan and London and 8pm for Madrid). Activity during weekends is of the same 

magnitude as in weekdays (see Figure 2(d)). This is the most important cluster considering the 

geographical area covered and the number of clusters included. The geographic layout of the clusters 

cover heavily residential areas in all cities: in Manhattan the limits of the island and in Madrid and 

London the outskirts of the areas considered. In Figures 3, 4 and 5, the areas include with this cluster are 

the ones not marked with any color. Our hypothesis for this type of signature is that it represents 

residential land use with citizens tweeting from home at any time during the weekends and after working 

hours during the week. 

 

Finally, Cluster 5 is only identified for London (see Figure 2(e)). Its signature is characterized by a 

reduced activity during the weekends. The weekdays show a peak in activity very early, at around 10am, 

after which a steady decrease happens showing little activity during the rest of the day. Looking at the 

physical layout, these clusters cover areas in the east and south of the city, like the area around Battersea 

Station and the Olympic Park. As a result of that, we hypothesize that this cluster represents Industrial 

land use (see Figure 5). 

 

Finally, it is important to clarify that we have only focused on identifying the main land use of each 

cluster (although there might be other minor ones), since this is the way urban planners typically compute 

land use maps.  

 

4.3 Land Use Validation 
In order to validate our land use hypotheses, we compare the evaluation results against official land use 

data released by the NYC Department of City Planning and the NYC Department of Parks & Recreation 

through the NYC Open Data Initiative (NYC, 2013); against the ward profiles released by the London 

Datastore Open Data Initiative (London, 2013) and against the district land use information computed by 

the Urban Planning Department in Madrid’s City Hall (Madrid, 2013). These catalogs are produced by 

city agencies typically through a combination of on-site inspections, interviews and questionnaires. 

 

The NYC Department of City Planning considers four main land use types: (1) residential, (2) 

commercial, (3) industrial and (4) parks & recreation (see Figure 6(a) for details). On the other hand, the 

information provided by the London Datastore considers three types of wards: (1) domestic buildings, 

which we associate to residential areas, (2) non-domestic buildings, which we pair up with business and 

industrial land use wards and (3) green spaces and paths. Finally, the information provided by the Urban 

City Planning Department in Madrid provides land use information at a district level and considers four 

types: (1) residential areas with different density levels (which we group), (2) industrial, (3) 

services(commercial & business) and (4) green spaces, as can be seen in Figure 6(b). 

 



To understand how well the clusters we have identified using Twitter activity represent the official land 

use areas, we evaluate the percentage of overlapping that exists between the physical layout of the 

clusters and the official land use map for each city under study. Such analysis will give us an 

understanding of the accuracy of our approach to identify land uses as well as of the impact that the 

Twitter density might have on the quality of the results. It is important to highlight that the percentage of 

overlapping is an approximate measure to validate land use identification given that both maps have 

different granularities: our cluster maps represent land segment clusters based on Voronoi and tweet 

density whereas the official land use maps show data at a block, ward or district level, depending on the 

city. Table 2 shows the percentages of overlap between the official land use maps for each city (rows) and 

our land use hypotheses (columns). Each element (i, j) in the tables represents the percentage of the 

official land use region that is covered by one of our land use clusters i.e., Business, Residential, 

Nightlife, Leisure and Industrial. Note that in the case of Manhattan our Voronoi approximation to the 

island does not precisely cover all Manhattan land due to its irregularities, and as a result the percentage 

does not exactly sum up to 100%. Comparing our results across cities, we observe that Manhattan shows 

the highest percentages of official areas covered by our clusters, whereas London and Madrid share lower 

accuracies in terms of land use identification. It appears that the higher tweeting density that Manhattan 

has (84.13/km2) has, as expected, a positive impact on the quality of land use identification. 

 

The official Commercial and Business land uses in the three cities are identified quite well by our 

business cluster with area coverage between 61% − 81%. London is a special case in which the official 

non-residential land use is partially identified by our business cluster (61%) but also by our industrial 

cluster (25%). Similarly, the official Residential/Domestic buildings land use has a high overlap with our 

residential cluster with coverage between 56% and 68% of the official areas. However, we observe a 

generalized trend across the three cities whereby around a 20% of the official residential area is also 

covered by our nightlife clusters, probably highlighting residential areas with high densities of bars and 

restaurants. This is in fact common in areas like the East Village in New York, Chelsea in London or 

Chueca in Madrid. 

 

While in London we are able to detect Industrial land use, and compare it to the official non-residential 

land use, the official Industry land use, present in Manhattan and in Madrid, goes undetected. We 

consider that the main reason for that is that in both cases, within the area of the city considered, 

industrial land is minimum (less than 3% of the total area in Madrid and less than 8% in Manhattan), and 

as a result they are included in larger Voronoi elements that has a different stronger land use. In fact, most 

of the official industrial land use is subsumed by our residential cluster in the case of Manhattan whereas 

in Madrid it is mostly covered by our business cluster. This might indicate that workers in the industrial 

areas are not using Twitter as much as people that live and/or work in that area, and as a result our 

technique captures the main land use, i.e. the official land use goes undetected due to lack of activity. 

Finally, the official Parks & Recreation and Greenspace & Paths land use is identified by our leisure 

cluster with overlaps between 71% and 81% of the official land use maps. 

 

On the other hand, our method identified a Nightlife cluster that has no counterpart in any of the official 

land uses. Nightlife clusters mostly overlap with the official Residential land use. However, we wanted to 

understand whether the cluster is incorrect or whether it is modeling a different type of land use not 

accounted for by the city halls. For the particular case of Manhattan, we identified the number of noise 

complaints per community district made to the 311 on-line service during 2010 (see Figure 6(c)). Given 

that the community districts have much lower granularity than our land use clusters, we computed the 

percentage of the Nightlife cluster that is included within the districts with the highest number of 

complaints, which corresponds to an 82% of overlap. Thus, it is fair to say that the Nightlife cluster 

detected by our method identifies a Nightlife land use that could be of interest for city halls to model 

potential areas of noise complaints. We did not find such validation information for London and Madrid. 

 

Our evaluation and validation for three different cities with varied physical layouts shows two important 

results. First, our methodology constitutes a good complement to model and understand in an affordable 

and near real-time manner land uses in urban environments. In fact, we have shown that residential, 

commercial and parks & recreation areas are well identified with coverage above 70%. Also, our 

approach is able to identify a land use, nightlife activity, not being considered up to now by city halls. 

This has implications from a planning perspective as these areas usually cause noise and security 

problems and can move over time.  

 



Second, Twitter density appears to have a reduced impact on the accuracy of our land use identification 

approach. As reported, coverage percentages of Manhattan, with a density of 84.13 tweets/km2 are 

slightly higher than those for London and Madrid with densities of and 42.51 tweets/km2 and 10.88 

tweets/km2, respectively. However, although the accuracy of the land use detection is slightly lower, the 

results still offer significant information for land urban planners. The reason for the reduced impact is 

probably that as a result of normalizing the activity vectors Xs = {Xs,wkd,Xs,wkn}, clustering groups elements 

that have the same shape and not the same activity which limits the impact of the density of tweets on the 

results.  

 
 

5. Conclusions 
 

With the deployment of pervasive infrastructures and the increasing use of geolocated user-generated 

content, urban planning will have a relevant and real-time source of information for characterizing urban 

dynamics. In this paper we have presented and validated an unsupervised approach for identifying land 

uses using location-based social media in Manhattan, London and Madrid. The implementation has been 

done with Twitter, although the same technique can potentially be used with other social media, provided 

it has geolocated information. The results have shown that geolocated tweets can constitute a good 

complement for urban planners to model and understand traditional land uses (like industrial or 

residential) and identify new ones (like nigh activities) in an affordable and near real-time manner. We 

will continue to address this challenge and expand our methodology by combining geolocated 

information with the content of tweets. 
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Figure 1: Land segmentation for Manhattan: (a) data points, i.e. geolocated tweets; (b) centers of activity computed 

with SOM, i.e. final location of the neurons after training; and (c) Voronoi tessellation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                  

 (a) Cluster Type 1: Business                                       (b) Cluster Type 2: Leisure /Weekend 

 

                        (c) Cluster Type 3: Nightlife                                        (d) Cluster Type 4: Residential 

 

 

 

 

 

 

 

 

 

 

    

(e) Cluster Type 5: Industrial 

 
Figure 2: Tweeting activity signatures per cluster for Manhattan (black), London (blue) and Madrid (red). The Y axis 

represents the normalized tweeting activity and the X axis two 24-hour (0-23:59) periods, the first one for an average 

weekday and the second one for an average weekend. 

 

 



 

 

 

 

 

Figure 3: Physical layout of business, nightlife and leisure clusters in Manhattan. Areas not marked with any color 

indicate residential land use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 4: Physical layout of business, nightlife and leisure clusters in Madrid. Areas not marked with any color 

indicate residential land use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Physical layout of business, nightlife, leisure and industrial clusters in London. Areas not marked with any 

color indicate residential land use. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Official Land Use Maps for Manhattan (a) and Madrid (b) and (c) Number of noise complaints in 

Manhattan per district. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) Manhattan official land 

uses: Commercial, Residential, 

Industrial and Parks&Leisure 

official. 
 

(b) Madrid official land uses: 

Commercial& Business, Residential 

(different densities considered), 

Industrial and Greenspaces. 

(c) Manhattan: Districts with Noise 

Complaints (NYC 311Service, red 

represents the highest number of 

complaints) 



 

 

 

 

 

 

 

 
 

 
Area 

Considered  
tweets/km2 

Number of 

Neurons (N) 
Distribution (p, q) 

Number of Land 

Uses (k) 

Manhattan 54 km2 84.13  64 p=16, q=4 4 

London 123.3 km2 42.51 168 p=12, q=14 5 

Madrid 93.6 km2 10.88 91 p=7, q=13 4 

 

Table 1: Main parameters for the characterization of each urban environment. 

 

 

 

 

 

 

 

Official Land Use 
Twitter Land Use 

Business Residential Nightlife Leisure& Weekend Industrial 

London      

Non-domestic buildings 61% 9% 3% 2% 25% 

1t1Domestic Buildings 9% 56% 23% 6% 6% 

Greenspace & Paths 8% 11% 7% 72% 2% 

Manhattan      

Commercial 81% 12% 3% 2% - 

Residential 7% 68% 19% 4% - 

Industry 13% 77% 0% 6% - 

Park & Recreation 6% 7% 6% 81% - 

Madrid      

Commercial & Business 69% 25% 4% 2% - 

Residential 11% 61% 18% 10% - 

Industry 58% 33% 3% 6% - 

Greenspace 7% 16% 6% 71% - 

 
 

Table 2: Percentage of overlap between official land uses and Twitter land uses for Manhattan, London and Madrid. 

 

 

 

 


