## Improved Spectral Resolution in 2D Localized Correlated Spectroscopy Using Enhanced Covariance NMR

## N. Wilson<sup>1</sup>, E. Frias-Martinez<sup>1</sup>, and M. A. Thomas<sup>1</sup>

<sup>1</sup>Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States

**Introduction:** Different versions of two-dimensional (2D) localized correlated spectroscopy (L-COSY) have been implemented and pilot evaluations show improved resolution of spectral peaks compared to one-dimensional (1D) MRS (1-2). A major drawback of 2D MRS in vivo approaches so far is due to the long acquisition duration dictated by the number of incremental steps which are used to achieve the 2<sup>nd</sup> spectral dimension. Recent implementation of a covariance NMR method in high resolution NMR shows clearly that equal resolution can be achieved along the two dimensions even though the indirect dimension has few points only (3,4). A major goal of this project was to implement covariance NMR in processing the L-COSY data while using limited indirect dimension points.

**Materials & Methods:** A 3T Trio-Tim MRI scanner equipped with a bitemporal 4-channel phased-array coil was used for this investigation. Several phantoms with metabolites at higher and physiological concentrations were tested using the covariance NMR based transformation. 2D L-COSY spectra were recorded in the occipitoparietal gray/white matter region of eight healthy human subjects and phantoms using the following parameters: TR/TE=2s/30ms, 100t1 increments for the  $2^{nd}$  dimension, 2048 complex points for the detected t2 dimension, 8 averages per t1 increment and 3x3x3 cm3 voxel. A reduced data set (2048x64) was taken from the original 2048x100 data set for further processing. The raw data was filtered using a skewed squared sine bell filter and Fourier transformed along the direct dimension, yielding a series of 1D spectra time shifted in the indirect dimension. Covariance matrices of size 2048x2048 were constructed from the real and imaginary parts and combined to form a magnitude covariance matrix. A control matrix was formed from the diagonal elements of the magnitude covariance matrix multiplied by a phase shift factor, such that each row of the control matrix is a 1D spectrum (4). A reference covariance matrix was computed from the control matrix. Element-by-element ratios of the magnitude covariance matrix to the reference covariance matrix were taken, and indices whose values were below a threshold of 10 were noted. The corresponding values in the covariance matrix were zeroed, and the result was plotted.

**Results and Discussion:** Shown in Figure 1 are 2D L-COSY spectra of a brain phantom containing 16 metabolites. The acquired matrix size of 2048x100 was double Fourier Transformed in Figure 1A. The acquired matrix was reduced to 2048x64 and represented as a covariance matrix in Figure 1B. Demonstrated in Figure 1B is the improved spectra resolution in the t1 dimension despite using only 64 t1 points, resulting in a total time 36% less than the that of the acquired data. We have evaluated in vivo 2D L-COSY spectra using the same methods, demonstrating improved spectral resolution and decreased acquisition time.

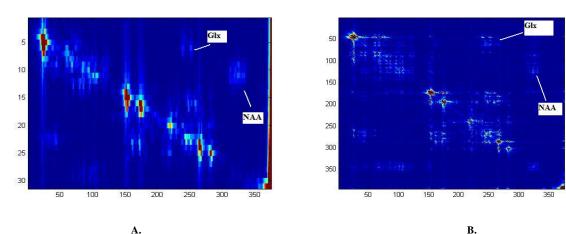



Figure 1: 2D L-COSY Spectra processed using A) 2D FFT (2048x100). B) Covariance Matrix (2048x2048).

**Conclusion**: Our preliminary results demonstrate that covariance NMR method can be extended to process the 2D L-COSY data with a matrix size of 2048x64 without affecting the overall quality of a 2D spectrum. A major advantage of this novel methodology is that equal resolution can be obtained along both dimensions

References: 1) Thomas MA, Yue K, Binesh N, et al. Magn Reson Med 2001;46:58-67

2) Binesh N, Huda A, Bugbee M, et al. J Magn Reson Imaging 2005;21:398-405

3) Bruschweiler R. J Chem Phys 2004;121:409-413-1213

4) Sasic S. App Spectroscopy 2008;62:840-846

5) Chen Y, Zhang F, Bermel W and Bruschweiler R. J Am Che Soc 2006;128:15564-65