
Abstract 

Word-of-mouth communications has been shown to 
play a key role in a variety of environments such as 
viral marketing and churn prediction. A family of 
algorithms, generally known as information 
spreading algorithms has been developed to model 
such pervasive behavior.  Although these algo-
rithms have produced good results, in general, they 
do not consider that the social network recon-
structed to model the environment of an individual 
is limited by the information available. In this pa-
per we study how the missing information (in the 
form of missing nodes and/or missing links) affects 
the spread of information in the well-known Das-
gupta et al. (2008) algorithm. The results indicate 
that the error made grows logarithmically with the 
amount of information (links, nodes or both) un-
known.  

1 Introduction 

“Word-of-Mouth” algorithms or information diffusion algo-
rithms originally appeared in social sciences [Goldenberg et 
al., 2001] and are based on the idea of using a social interac-
tion network to model the flow of information and influ-
ence. The concept groups a variety of algorithms that model 
the pervasive word of mouth behavior and are typically 
based on the spreading activation method used in cognitive 
psychology. These family of algorithms has been success-
fully used in a variety of areas, including viral marketing 
[Richardson et al., 2002], churn prediction in telecommuni-
cations networks [Dasgupta et al., 2008], information re-
trieval and to model some behaviors such as trust [Ziegler et 
al., 2004] and spread of epidemics.  
Nevertheless “word-of-mouth” algorithms implicitly assume 
that the social network used for the spreading of influences 
is completely known, i.e. they do not model or consider the 
error introduced by missing nodes and missing links. In gen-
eral, when applying these algorithms to real scenarios the 
information known is to some extent limited, for example: 
(1) for churn prediction the social network reconstructed is 
the one provided by the calls of clients, but no other interac-
tion, such as face to face communication, IP phones, instant 
messenger, etc. is reflected; and (2) when modeling viral 
marketing the information is typically collected from re-
view-product sites [Richardson et al., 2002], but again, no 
other influences and/or players are captured by the network. 

Because of the nature of the algorithms, which use the 
structure of the network to spread influence, this limited 
view of the network should impact the final results, mainly 
because:  (1) a given individual will receive direct and indi-
rect influence from a variety of (even random) individuals 
from which no information from the data source used is 
available or if some information is available, it is very lim-
ited; for example, in a telecommunication network a client 
can receive influence from another individual face to face, 
which will not  be reflected in the Call Detailed Records 
(CDRs), or form a phone call of an individual that uses a 
different carrier, from which a limited amount of informa-
tion is known; and (2) even between the individuals in-
cluded in a dataset not all possible links are necessarily 
known; for example in a telecommunication network the 
data will capture the phone calls between individuals, but no 
other type of interaction such as social interaction or IP 
phone calls, i.e. the lack of an edge between two individuals 
in a CDR-generated graph does not imply that there is no 
influence between those two individuals by another means 
of communication.  
Figure 1 presents a simplified example of these cases for a 
telecommunication operator. The figure on the left repre-
sents the network that can be reconstructed using phone 
calls where some of the users identified are part of the net-
work’s service (circles) and others are from other networks 
(squares). From these users only part of the links are known.  
The figure on the right shows the same graph but with the 
missing links (web 2.0 services for example) and nodes 
from which no information is available in the original data, 
but that will play a role when information spreading and 
influence. 
These concepts of missing links and missing nodes are re-
lated to some extent to the work done in the area of weak 
ties. Weak ties refer to the fact that individuals are often 
influenced by other individuals with whom they have tenu-
ous or even random relations [Goldenber et al., 2001], while 
strong ties are defined by an individual’s personal network. 
In the environments in which information spreading algo-
rithms are applied, the strong ties defined by the information 
used will be reconstructed, nevertheless not all weak ties 
will be reflected in the network reconstructed as a result of 
data filtering. There also would be weak ties and strong ties 
originating from other sources of interaction that will not be 
reflected.  It has been shown that the influence of the weak 
ties can be as strong as the influence of strong ties in word-
of-mouth modeling [Goldenberg et al., 2001]. It is then clear 
that if no information of weak ties or ties originating from 
other data resources is considered in the networks an error 
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of the estimation will be introduced by information spread-
ing algorithms.  
The goal of this paper is to measure the impact of missing 
information (links and/or nodes) when applying diffusion 
information algorithms and to model these errors in the con-
text of a telecommunication network. In the context in 
which information spreading algorithms are applied, and 
considering that the final value of energy of the nodes is 
used to make predictions, this error should be considered 
when reporting the final results, especially for sensitive ap-
plications such as churn prediction or the spread of epidem-
ics.  

 
Figure 1. Example of (left) the social network from a telecommu-

nication perspective and (right) the actual social network, with all 

the extra interactions and missing nodes. 

2 Related Work  

Although there are a variety of information spreading algo-
rithms in the literature [Dasgupta et al., 2008; Goldenberg et 
al., 2001], in general all of them are based on the spreading 
activation method used in cognitive psychology to model 
the fan out effect. These algorithms are based on the follow-
ing (simplified) steps: 
 

1. Nodes that are activated are given an activation 
value (typically one) while non-activated nodes are 
given a value of 0. This activation value represents 
the influence energy that the node can spread over 
the network. In the case of viral marketing it repre-
sents the energy (influence) of people that have 
bought a product, in the case of churn prediction it 
represents the energy (influence) of the people that 
have “churned”. 

2. The set of nodes that are activated transfer part of 
their energy to neighboring nodes considering a 
spreading or propagation factor which indicates 
which part of the energy is transferred and a distri-
bution function which indicates the percentage of 
energy that is transferred to the neighboring nodes.  
In viral marketing or churn modeling the spreading 

factor is a variable, while the distribution function 
is given by the weight of each link that leaves the 
activated node.  

3. Step 2 is repeated until the variation of the energy 
in the nodes is below a threshold and no new nodes 
are activated. 

4. Once the energy distribution has converged, the 
nodes over a given threshold of energy are consid-
ered to be “infected”. In the case of churn predic-
tion this set of nodes are considered to be at risk of 
switching to another carrier, while in viral market-
ing these are considered to be susceptible to buying 
a product.   

 

The work presented in Dasgupta et al. (2008) presents the 

use of a spreading activation algorithm for demonstrating 

the relevance of the social network of a client for churn pre-

diction.  The results indicate the influence of the social net-

work of a user in deciding to churn. Nevertheless this churn 

application of a spreading activation algorithm, and, to the 

best of our knowledge, the application of any activation 

algorithm does not consider information that may exist out-

side the dataset used to construct the network.  
The work of Lahiri et al. (2008) measures how changes 
produced by the evolution in time of dynamic networks 
impact the accuracy of the prediction of the spread of the 
Independent Cascade Model [Goldenberg et al., 2001]). The 
authors focus more on the total size of the spread (how 
many nodes are affected), whereas we focus on how the 
spread was, i.e. which particular nodes are affected. Another 
difference with the present work is that the Independent 
Cascade Model is inherently stochastic whereas Dasgupta’s 
et al. model is deterministic. 
In this paper we will consider Dasgupta et al.´s (2008) algo-
rithm to study which error is actually introduced by the 
spreading activation algorithm in a telecommunication net-
work considering that some of the information (links, nodes 
or both) is missing.  

3 Data Set 

Cell phone call data (CDR: Call Detail Records) from a sin-

gle carrier was obtained for a number of users close to 

50,000. The data was collected from a neighborhood of a 

major city over a period of six months. The originating 

number and the destination number of the CDR were both 

encrypted. From all the information contained in a CDR 

only the originating encrypted number, the destination en-

crypted number, the aggregate duration of the calls and the 

frequency of calls were considered for the study. The data 

set contained information only for voice calls between users 

(no SMS or other forms of communication were used). The 

sample included only residential customers (no business or 

corporate cell phones), and only calls above 1 second and 

that had no errors when the called finished were considered. 

Only aggregated information about the phone calls of each 

individual was considered 



Calls were used to create a network with directed edges. 

Two nodes X and Y were linked if there was a phone call 

between X and Y, where the origin and destination of the 

phone call define the orientation of the edge. Each link is 

given a weight, normalized in seconds, defined by the total 

duration of the phone calls from X to Y over the entire 6 

months. Note that two nodes can be linked by two edges one 

in each direction and with a different weight. A total number 

of links close to 120,000 define the network. 

 

Figure 1. (left) log-log distribution of the degree distribution and 

(right) of the duration distribution of the original network. 

 

Figure 2. (left) log-log distribution of the degree distribution and 

(right) of the duration distribution of the sampled network. 

 

Due to the computational complexity of the experiments 

that will be described in the next section, the fist step was to 

extract a representative sub-network from the original data. 

A random walk sampling technique proved to be best to 

reproduce the original network behavior information spread-

ing wise [Leskovec et al. 2006; Becchetti et al., 2006]. The 

mechanism started at a random node and followed the edges 

at random until a given number of nodes were collected. All 

existing edges between those nodes were added to the net-

work. The resulting sample sub-network contained 1,408 

nodes and 3,910 edges. 

Figure 1 presents the log-log representation of the distribu-

tion degree (left) and the duration distribution (right) of the 

original network and Figure 2 of the sampled network. In 

both cases, the degree distribution has a power law fitting 

with a slope of 2.3 in the original network and of 2.1 in the 

sample network. Also the duration distribution has a log-

normal behavior in both cases, with !=5.02 "=1.77 in the 

original network and ! =5.53 and "=1.67 in the sample net-

work. These values indicate that the sampled network has 

two important t macroscopic statistical properties similar to 

the original network. Also, these values are in agreement 

with other values reported in the literature for characterizing 

cell phone telecommunication networks [Seshadri et al., 

2008; Onnela et al., 2007], although some of these papers 

argue that the approximation can be improved with a Dou-

ble Pareto LogNormal fit [Seshadri et al., 2008]. 

4 Methodology 

Three experiments were run to measure the impact of miss-
ing information in information spreading algorithms in the 
context of a telecommunications network: (1) evaluate the 
impact of missing links, i.e. links not captured by the tele-
communication networks such as physical interactions, IP 
phones, social network websites, phone calls made with 
other competitor networks, etc.; (2) evaluate the impact of 
missing nodes, representing the fact that a telecommunica-
tion company only sees its own part of the global telecom-
munication network, and (3) evaluate the impact of missing 
nodes and missing links. 
In order to run these experiments the algorithm described in 
Dasgupta et al., (2008) was used with the sampled network 
presented in the previous section. As with any other infor-
mation spreading algorithm there are some parameters that 
need to be defined, and in this case we have used the ones 
recommended in Dasgupta et al., (2008): nodes that churn 
are assigned an energy value of 100, nodes that are not 
churners are assigned a energy of 0, the propagation factor 
is 0.25, the spreading stops when the relative change of in-
fluence in each node is below 1% and the spreading factor 
(the weight on the links) is defined by the total time talked. 
To run the experiments, initially a fixed percentage of ran-
dom activated users (in the telecommunication context it 
would mean users that have churned) are considered. After 
that, the information spreading algorithm is run over the 
original sampled network. In the end each node of the net-
work will have an energy level, and we consider this distri-
bution of energy the Ground Truth (GT). Note that in Das-
gupta’s et al. (2008) they know which nodes are initially 
activated (the churners) whereas we just choose some ran-
dom nodes. 
After the GT has been obtained, a given number of elements 
are randomly deleted from the original network: (a) for the 
first experiment we randomly delete a percentage of existing 
links; (b) for the second experiment we delete all the links 
from a randomly selected percentage of nodes, thus isolating 
the nodes – which for the error computation is exactly the 
same as deleting the nodes; and (c) in the third experiment 
we delete a percentage of links and a percentage of nodes. 
The resulting network is called S. Once the selected infor-
mation has been deleted, the spreading algorithm is run over 
S, which will assign a given energy to each one of the 
nodes.  
The error in the information spreading algorithm is meas-
ured as the root mean squared deviation (RMSD) obtained 
from subtracting the final value of energy assigned by the 
algorithm to each node of the GT network from each corre-
sponding node of the S network. Being N=1,408 the number 
of nodes of the GT and S networks, GTi the level of energy 
of node i in GT after the application of the information 
spreading algorithm and Si the value of energy assign by the 



algorithm to node i in the S network, the error introduced by 
missing information is defined as: 
 

 
(1) 

 
The error is presented as the difference in energy instead of 
as the error in the number of activated nodes. In general, in 
spreading algorithms the final prediction (churners in churn 
prediction, infection in spreading of viruses, propensity to 
buy a product in viral marketing, etc.) are identified as those 
having a final value of energy bigger that a threshold. To 
avoid considering this threshold when measuring the error, 
whose definition may me arbitrary depending on the par-
ticular application, we focused on the difference of the final 
value of energy between the energy of the individual nodes 
between GT and S. 
In order to avoid possible artifacts from the randomly acti-
vated nodes or from the information randomly deleted 
(links, nodes or both) each experiment was run 100 times, 
and the final RMSD was reported with a mean and a stan-
dard deviation.   

Figure 3. Impact in terms of RMSD, Y axis, of the percentage of 

missing links for 1%, 5%, 10% and 20% activated nodes (churn-

ers). 

 

Figure 4. Error fitting of missing links using linear and logarithmi-

cal regression.  

 

5 Results Analysis 

Figure 3 presents the impact of missing links in the informa-
tion spreading algorithm. The experiment was run consider-
ing 1%, 5%, 10% and 20% of randomly activated users, 
which are represented by each one of the curves. Note that 
an activated user is the one who can spread some informa-
tion to its neighbors. For each one of these cases experi-
ments were run 100 times, from 0% of missing links to 90% 
of missing links in 5% increases (X axis). The results in 
each case are reported with the mean and the standard de-
viation of the RMSD (Y axis). Figure 4 presents the func-
tion approximation (linear and logarithmical) that best fits 
the error. In all cases the best fit is a logarithmic curve, hav-
ing a smaller SSE (sum of squared errors) than the linear 
regression. It can be seen that for a number of activated us-
ers ranging from 1% to 5%, the missing links introduce a 
RMSD error in the range 0-5%, but higher percentages of 
activated users have a higher error which increases loga-
rithmically with the percentage of missing links. Also the 
RMSD variance increases with the number of missing links.  

Figure 5. Impact of the percentage of missing nodes for 1%, 5%, 

10% and 20% activated nodes (churners). 

Figure 6.  Error fitting of missing nodes using linear and logarith-

mical regression.  

 

Figure 5 presents the impact of missing nodes in the infor-
mation spreading algorithm. The experiment was run con-
sidering 1%, 5%, 10% and 20% of randomly activated us-
ers, which are represented by each one of the curves. For 
each one of these cases experiments were run 100 times 
from 0% to 85% in 15% increases (X axis). The results in 
each case are reported with the mean and the standard de-
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viation of the RMSD (Y axis). Figure 6 presents the regres-
sion (linear and logarithmical) that best fits the error. As in 
the previous case there is a logarithmical behavior of the 
error, which increases with the number of missing nodes. 
Also the RMSD variance increases with the number of 
missing nodes.  
Although the previous two experiments present interesting 
results, they do not reflect a real situation because only 
nodes or links are missing. Figures 7, 8 and 9 present the 
error when both situations happen.  
Figure 7 presents the RMSD error when considering 1% of 
activated users, for 0% removed nodes, 30% removed nodes 
and 60% removed nodes (each one of the curves) for a per-
centage of links removed that evolves from 0% to 90% once 
the nodes have already been removed (X axis). Figure 8 
presents the same experiment but when the number of acti-
vated nodes is 20%. In both cases the curve corresponding 
to 0% removed nodes correspond to the curves presented in 
Figure 3.  

Figure 7. Impact of the percentage of missing links, for 1% acti-

vated nodes and 0%, 30% and 60% missing nodes. 

 

Figure 8. Impact of the percentage of missing links for 20% acti-

vated nodes and 0%, 30% and 60% missing nodes.  

 

Both figures indicate how an increase in the number of acti-
vated nodes implies an increment of the RMSE of the final 
energy of the networks. As for the percentage of missing 
nodes, the error model increases logarithmically with the 
number of missing nodes. From a practical perspective these 
results imply that if the number of users that buy a product 
or the number of users that churn is high, the RMSD, even if 
the number of missing nodes is low, will be considerable 

high and the predictions made by the information spreading 
algorithm should be corrected with other information of the 
individuals not originating from their social network. 
Thus if churn ratio is high then prediction models based 
solely on word of mouth algorithms may not be accurate 
enough for sensitive applications. Therefore complementary 
information about the individual behavior in the form of 
user models as well as link prediction algorithms may be 
necessary.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Representation of RMSD for different 1%, 5%, 10% and 

20% activated nodes (churners) and different percentages of nodes 

and links missing (removed). 

 

Figure 9 presents the RMSE considering a missing links 
(ranging from 0% to 90%, X axis)), missing nodes (ranging 
from 0% to 90%, Y axis) and a percentage of activated users 
of 1%, 5%, 10% and 20% (each one of the surfaces, Z axis). 
These results confirm the previous findings, the logarithmic 
behaviour of the RMSD error with the percentage of links 
and percentage of nodes missing, and the increase in the 
error when the percentage of activated users increases. For a 
reduced number of activated users, 1%, the error for the 
prediction is not relevant, nevertheless for higher values the 
error will have a negative impact in the prediction, as the 
5% active users curve already shows. 
Figure 10 also shows that the RMSD error introduced is 
defined by a logarithmic surface where the variables are the 
percentage of links and nodes missing.  This figure can be 
used to estimate the error introduced by the algorithm in the 
energy distribution process. The number of activated users 
is in general known, i.e. number of churners in a specific 
period, number of users that have contracted a virus or 
number of users that have acquired a product. The number 
of missing nodes can also be to some extent estimated. For 
example, in a telecommunication network the number of 
clients is known, and the total number of users with phone 
(potential clients) is also known. The percentage of links 
missing is much harder to estimate. Thus in general the es-
timation of the RMSD error introduced is defined by a loga-



rithmic curve where the variable is the percentage of links 
missing. 

5.1 Other Experiments 

The experiments reported in the previous section considered 
directed edges weighted by the total amount of time that two 
clients had a contact. Nevertheless other weightings can be 
used for characterizing links. The same set of experiments 
described in the previous section were run using frequency 
of calls as weights, and just plain connectivity (no weights) 
obtaining very similar results. Also, presented results are 
consistent with our experiments on sparser networks. 

6 Conclusions 

This paper has presented RMSD experimental results of the 
error introduced by a particular information spreading algo-
rithm considering that the network used has missing infor-
mation in the form of nodes and links. From an application 
perspective the study highlights the fact that for any applica-
tion only partial information will be known. Because the 
influence of missing ties and nodes is as relevant as the in-
fluence of known ties and nodes, an error in the distribution 
of the influence (energy) will be introduced. This fact im-
plies an error in the prediction made by the algorithm. The 
results, summarized in Figure 10, indicate a logarithmic 
error in the number of nodes and the number of links miss-
ing. Figure 10 can be used to estimate the error introduced 
considering that the number of activated nodes is known, 
and the total number of missing nodes may be roughly esti-
mated. While missing links can be to some extent estimated 
[Liben-Nowell et al. 2007; Newman et al. 2008], the source 
and destination of missing nodes are much more difficult to 
estimate and further work in this area is needed. 
From a more general perspective, another conclusion of our 
study is that although information spreading algorithms are 
a powerful tool for modeling behaviors such as churning, 
spreading of viruses and viral marketing, the predictions 
obtained, if a relevant part of the information is missing or if 
there is an elevated number of activated nodes, specially for 
those nodes that have a final value of energy close to the 
threshold used can be incorrect. In order to make an im-
proved prediction other sources of individual information 
should complement the “word-of-mouth” approach. In the 
case of churn prediction some examples would be calling 
patterns [Wei et al., 2002] or complaint data [Hadden et al., 
2006]. 
The results that have been presented have been obtained 
from a telecommunications network and may not generalize 
to all types of network. Further experimentation is needed to 
understand how the error introduced depends on the type or 
the architecture of the network in order to estimate a generic 
error model introduced by information spreading algo-
rithms. 
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