
SIMD OPTIMIZATION OF EUCLIDEAN DISTANCE TRANSFORMS
FOR PATTERN RECOGNITION

B. Martín1, A.B. Moreno2, A. Sánchez2 and E. Frías-Martínez3
1 Facultad de Informática, Universidad Politécnica de Madrid, 28660 Boadilla (Madrid), Spain

bermmn@terra.es
2 ESCET, Universidad Rey Juan Carlos, 28933 Móstoles (Madrid), Spain

{a.b.moreno, an.sanchez}@escet.urjc.es
3 Computer Science Department, New York University, 715 Broadway Room 719, NY, NY 10003, USA

frias@cs.nyu.edu

Abstract

This paper describes a SIMD optimization method for
computing different Euclidean distance algorithms.
Distance transforms have been widely applied to image
analysis and pattern recognition problems. The
proposed approach is based on the inherent fine and
medium-grain parallelism of considered distance
algorithms and has been implemented using Intel
Streaming SIMD Extensions (SSE), intrinsics and
VTune Analyzer. Experimental results show that
optimized prefetched SIMD algorithms improve by four
the number of execution cycles in comparison with the
initial SISD solutions.

Keywords: Euclidean distance transforms, SIMD
optimization, intrinsics, image analysis, pattern
recognition.

1. INTRODUCTION

Numerous applications of distance transforms in

image analysis and pattern recognition have been
reported in the literature [1][2]. Euclidean distance
transforms have been deeply studied and applied in
research areas like medical image processing [3],
computer graphics [4] and biometric pattern recognition
[5]. In general, these domains are highly demanding
both in terms of execution time and memory
requirements. The volume of data to be processed is
often large, and many times the results are useful only if
they are available in real-time. Of course, an important
part of these demands are handled by hardware, but the
use of software optimization tools combined with the
development of improved algorithms for the considered
computational problems is also very critical for the final
optimized solution. Distance transforms algorithms, as
needed in many image and pattern recognition
problems, require such efficiency improvements.

In general, these transforms are based on different

distance functions. Euclidean distance transforms, which
make use of the Euclidean metric to compute distances,
are preferred in many applications because they are well
known from classical geometry. The advantage of
computing exact Euclidean distances is the fact that it is
intuitively obvious. However, this distance transform is
often regarded as a highly time-consuming operation
due to square root and to its non-integer value.
Consequently, other approximations to the exact
Euclidean distance transforms have been proposed, such
as square Euclidean, Manhattan, chessboard and
Chamfer distances [1].

Euclidean distance transforms have a linear time

complexity in the number of pixels of the image (i.e.
O(mn), for a m by n digital image). Many sequential
algorithms [6] and theoretical parallel algorithms [7] for
computing Euclidean distance transforms have been
proposed. Furthermore, architectures that implement
those algorithms have been developed [8].

In this paper, a parallelization technique for

computing Euclidean distance transforms in pattern
recognition applications, using the streaming SIMD
extensions of Intel processors is presented. The
proposed optimization approach also considers the
characteristics of distance algorithms in real pattern
recognition problems (i.e. high number of feature
vectors with many data components) and tunes the
solution to the target processor architecture. Rather than
completely optimizing the distance algorithms, only the
most critical parts (mainly nested loops) are vectorized
to exploit the inherent fine-grain parallelism [9]. This
has been done using VTune Performance Enhancement
Environment [10]. Experimental results show significant
cycle time improvements of our proposed parallelization
approach when computing Euclidean distance
transforms.

mailto:frias@cs.nyu.edu

2. EUCLIDEAN DISTANCE
TRANSFORMS

In a 2D space, the exact Euclidean distance (DE)
between two points with co-ordinates (x1, y1) and (x2, y2)
is:

 To simplify the highly complex calculation due to
square root, the square Euclidean distance (DSE) can be
computed as:

] 2

21
2

212211)()(),(),,([yyxxyxyxDSE −+−=

 The distance between two points can also be
expressed as the minimum number of elementary steps
to move from the starting point to the end point. Based
on this idea other Euclidean distance transforms are
usually defined. If only horizontal and vertical moves
are allowed, the Manhattan or D4 distance (also called
city-block) is obtained:

] 212122114),(),,([yyxxyxyxD −+−=

 If moves are also allowed in diagonal directions,
chessboard distance or D8 is formulated as:

A 3D graphical representation of these Euclidean

distance transforms is shown in Figure 1. It can be seen
that the surfaces defined by each distance transform are
a sort of cones with sides that are radially symmetric. In

many pattern recognition problems, the previous
distance formulae are generalized for a m-dimensional
space where m represents the pattern (feature) vector
dimension.

3. PROPOSED OPTIMIZATION
FRAMEWORK

This section outlines the issues taken into account to
achieve the best performance for computing Euclidean
distance algorithms using Intel streaming SIMD
extensions. Figure 2 sketches the proposed fine and
medium-grained parallelization environment.

 The different distance transform algorithms are
written in C in the form of nested loop structures and a
preliminary high-level optimization is performed. We
have used Intel C/C++ Compiler and Pentium III
processor with SSE extensions to work with floating-
point data. Source code analysis and tuning of the
considered application has been done using VTuneTM
Performance Analyzer (or VTune Analyzer) [10]. Next,
we describe the elements of Figure 2.

3.1. Streaming SIMD Extensions

Pentium III processor from Intel is based on the P6

microarchitecture. This processor added new extensions
to the AI-32 instruction set such as streaming Single
Instruction Multiple Data (SIMD) Extensions (SSE)
[11][12][13]. SIMD operations allow code developers
to perform an identical operation on multiple pieces of
data in parallel. SSE added 68 new instructions,
including 45 new floating-point operations, 11 SIMD
integer instructions, and 5 cache-management
instructions [11]. The Pentium III pipeline is twelve

[] () ()221
2

212211),(),,(yyxxyxyxDE −+−=

]),max(),(),,([212122118 yyxxyxyxD −−=

Figure 1. (a) Euclidean, (b) Manhattan, (c) chessboard and (d) square Euclidean distances.

(a) (b)

(c) (d)

stages long, and is a three way superscalar
superpipeline. Out-of-order execution capability allows
the concurrent execution of several instructions by
considering the data dependencies and availability of
resources. Data type available for SIMD-SSE is shown
in Figure 3. It consists of a 128-bit packed floating point
register which allows for four 32-bit floating point
numbers to be packed into it. Other considered issues
for optimization with the streaming SIMD Extensions
are: SIMD and memory interactions, prefetch
instructions, and optimizing memory use for array of
data.

3.2. VTune Analyzer

VTune Analyzer [12] is a tool that gives a user a

graphical view of the performance of an application, and
it offers feedback on how to tune it. VTune Analyzer
incorporates different code analysis techniques designed
to optimize the source code: Sampling Analysis, Static
Code Analysis, Dynamic Analysis, Code Coach, Call
Graph Profiling and ‘Chronologies’. Event-based
sampling analysis is the most commonly used method
for analyzing application performance. It allows to
display the execution time of considered instructions to
detect program bottlenecks. Figure 4 shows a view of
VTune’s Sampling Analyzer. The basic method of using
Dynamic Analysis is to select a region of the code to be
simulated.

Then, VTune can indicate the number of cache misses

in a loop and can suggest the use of prefetching.

3.3. Intel C/C++ Compiler

Intel C/C++ Compiler [14] is a highly-optimized

compiler. It offers several options for programmers to

use Streaming SIMD Extensions: inlined assembly,
intrinsics, vector class libraries, and vectorization. We
have mostly used intrinsics to optimize Euclidean
distance algorithms. Intrinsics are C-like function calls
for which compiler generates inlined code. Each
intrinsic map to a specific SSE (or MMX) instruction
[10].

The use of intrinsics introduces a data definition

according to Figure 3. The data type is __m128. The
most common intrinsics are:

• __m128 mm_load_ps(float *mem),
 Loads a __m128 variable from memory.
• __m128 mm_add_ps(__m128 x, __m128 y),
 Adds two __m128 values
• __m128 mm_store_ps(float *mem, __m128 x),
 Stores a __m128 variable in memory.

4. RECOGNITION BASED ON
EUCLIDEAN DISTANCE TRANSFORMS

As an example of pattern recognition application
requiring real-time computations, we used for our
experiments data extracted from 3D facial meshes
captured with a 3D range digitizer. The digitizer
provides a large 3D point density of scanned face
surfaces which are illumination independent. After a
preprocessing stage, most salient facial points are
accurately computed (i.e. nasion, pronasale, etc.), and
some local measures related to these 3D facial points
are also obtained (i.e. median and Gaussian curvatures).
With these data computed for each 3D facial surface, a
database of normalized pattern (feature) vectors is
defined [15].

The considered pattern recognition problem, as shown
in Figure 5, consists in determining the most similar
feature database vector with respect to a reference
vector (computed in a similar way from an unknown
captured 3D face mesh), and the corresponding distance
value.

0 31

sign

SP FP

exponent mantissa

127

Figure 3. SSE data type.

Intel C/C++
Compiler

Intel Pentium III Processor
with Streaming SIMD

Extensions

Optimization of distance
algorithms

VTune Analyzer

Figure 2. Description of the optimization framework

Figure 4. VTune Analyzer: source code
view.

It should be pointed out that the proposed
optimization method can be applied to any pattern
recognition problem using Euclidean distances.

Let M be the number of feature vectors in the

database and N the number of fixed features
(characteristics) per vector. Each feature vector also
contains an identification field, named ik (k∈[1..M]),
which not takes part in the distance computation
algorithm but allows an easy identification of a given
feature vector.

Similarity between two vectors is computed via the

usual Euclidean distance transforms: exact Euclidean,
square Euclidean, Manhattan and chessboard,
respectively.

Two versions for each distance algorithms are

implemented: non-weighted distance algorithms which
means that all features are equally important, and
weighted distance algorithms which assign different
weights to features according to their discriminate
power. Figure 6 sketches the initial C source code for
solving the recognition problem using non-weighted
Manhattan distances. Figure 7 shows the SIMD
optimization of this previous algorithm which consists
in computing four distance features in parallel using

SSE extensions and intrinsics.

Once calculated the distances between each

corresponding pair of features from any database vector
and reference vector, it is necessary to determine the
total distance value between these two vectors by adding
all partial distance values. This is also done in parallel
by means of the following intrinsic instruction:

*sse_aux3=_mm_add_ps(*sse_aux,*sse_aux2);

5. EXPERIMENTAL RESULTS

To test our proposed optimization approach for
computing Euclidean distance transforms, we used
different number of vectors and features. Let M be the
number of feature vectors in the database and N the
number of fixed features (characteristics) per vector.

Three different problem instances have been

considered: problem P1, where M = 100 and N = 16;
problem P2, where M = 200 and N = 32; and problem
P3, where M = 16 and N = 100. Feature values are 32-
bit floating-point values in the range [0.0..100.0] in
millimetres. Figure 8 represents the total number of
clock cycles for non-weighted distance algorithms for
problem P1: (1) exact Euclidean, (2) Manhattan, (3)
chessboard and (4) square Euclidean, respectively. For
each distance algorithm, three execution times have
been measured: SISD; SIMD and SIMD using L1 data
cache (prefetch), respectively.

v1 v2 v3 ... vN id

a1,1 a1,2 a1,3 ... a1,N i1

.....

Shortest
distance

algorithms

Database of pattern vectors

Reference vector

a2,1 a2,2 a2,3 ... a2,N i2

aM,1 aM,2 aM,3 ... aM,N iM

Minimal
distance
value

Closest
pattern
vector

Figure 5. High level diagram of the considered recognition
problem.

for(i=0;i<M1;i++)
 dist_cerc+=fabs(vec[i]-lista_vector[0][i]);
pos=1;
while (pos<N){
 dist=0.0;
 for(i=0;i<M1;i++)
 dist+=fabs(vec[i]-lista_vector[pos][i]);
 if (dist<dist_cerc){
 dist_cerc=dist;
 pos_enc=pos;
 }
 pos++;
}

Figure 6. C pseudocode for non-weighted Manhattan distance.

#include "xmmintrin.h"
....
cte[0]=0x7fffffff; cte[1]=0x7fffffff; cte[2]=0x7fffffff; cte[3]=0x7fffffff;
....
pos=1;
while (pos<N){
 (__m128)aux=_mm_and_ps(_mm_sub_ps(
 (__m128)&vec[0],*(__m128*)&lista_vector[pos][0]),*sse_cte);
 (__m128)aux2=_mm_and_ps(_mm_sub_ps(
 (__m128)&vec[4],*(__m128*)&lista_vector[pos][4]),*sse_cte);
 (__m128)aux3=_mm_and_ps(_mm_sub_ps(

(__m128)&vec[8],*(__m128*)&lista_vector[pos][8]),*sse_cte);
 (__m128)aux4=_mm_and_ps(_mm_sub_ps(

(__m128)&vec[12],*(__m128*)&lista_vector[pos][12]),*sse_cte);

(__m128)aux5=_mm_add_ps(*(__m128*)aux,*(__m128*)aux2);

(__m128)aux6=_mm_add_ps(*(__m128*)aux3,*(__m128*)aux4);

(__m128)aux7=_mm_add_ps(*(__m128*)aux5,*(__m128*)aux6);
 dist=aux7[0]+aux7[1]+aux7[2]+aux7[3];

 pos++;
}

Figure 7. Fine-grain parallelization on non-weighted
Manhattan distance (I).

Figure 9 is similar to Figure 8, but now the

corresponding weighted distance algorithms are
considered.

From the two previous figures, we can deduce that

best execution results are achieved using square
Euclidean and Manhattan distance transforms. Another
consequence of the experiments is that optimized SIMD
with prefetch solution approximately reduces by four the
number of clock cycles with respect to the
corresponding sequential SISD solution.

To estimate the average error of different distance

algorithms with respect to the exact Euclidean distance,
the following error formula is used:

 d
MSE = ()∑

=

−⋅
M

j

E
j

d
j xx

M 1

21

where M represents the number of pattern vectors in the
database, E

jx is the exact Euclidean distance between

vector j and reference vector, and d
jx is a similar

distance value but considering other distance transforms
(square Euclidean, Manhattan and chessboard,
respectively).

Table 1 shows the number of clock cycles and

estimated errors for each distance transform using the

considered problems P1, P2 and P3, respectively. A
consequence of the results in Table 1 is that a better
approximation distance to exact Euclidean distance
requires a higher execution time. In the case when the
number of features per vector increases (in problem P3),
a trade-off solution is the use of chessboard distance
transform algorithm which offers best ratio between
execution time and average error with respect to exact
Euclidean distance.

 Square Euclid. Manhattan Chessboard Exact
Euclid.

 Cycles Error Cycles Error Cycles Error Cycles
P1 8.6 7·108 9.6 1·105 10.1 8600 15.3
P2 32.5 3·109 39.2 7·105 43.4 24000 42.3
P3 8.7 3·1010 8.6 8·106 7.5 105 9.5

Table 1. Clock cycles and distance errors for distance
formulas and Problems P1, P2 and P3.

6. CONCLUSIONS

In this paper, we have presented a parallelization

method based on Streaming SIMD Extensions for
computing Euclidean distance transforms. Our approach
provides a systematic methodology for optimizing many
applications where exploitation of fine and medium-
grain SIMD parallelism is needed. Euclidean distance
transforms have been properly tuned to the considered
final architecture using the proposed SIMD optimization
environment. The number of cycles per instruction when
computing distances has been approximately reduced by
four in the parallel SIMD solution using data prefetch in
L1 cache with respect to the corresponding sequential
SISD algorithm. Future work includes the
parallelization of Chamfer distance transform using the
proposed approach. Migration to Pentium 4 architecture
using SSE2 extensions for the considered distance
algorithms is now in progress.

REFERENCES

[1] M. Sonka, V. Hlavak and R. Boyle, Image Processing,
Analysis, and Machine Vision (Pacific Grove, CA: PWS
Publishing, 1999).
[2] R.C. Gonzalez y R.E. Woods, Digital Image Processing
(Reading, MA: Addison Wesley, 1993).
[3] O. Cuisenaire, Distance Transforms: Fast Algorithms and
Applications to Medical Image Processing, PhD Thesis,
Université Catholique de Louvain, Belgium, 1999.
[4] J. Foley, A. Van Dam, S. Feiner and J. Hughes, Computer
Graphics: Principles and Practice (Reading, MA: Addison
Wesley, 1990).
[5] V. Starovoitov, and D. Samal, A geometric approach to
face recognition, Proc. of the IEEE-EURASIP Workshop on
Nonlinear Signal and Image (NSIP'99), v. 2, 1999, 210-213.
[6] G. Borgefors, “Distance Transformations in Arbitrary
Dimensions”, Computer Vision, Graphics and Image
Processing, v. 27, 1984, 321-345.
[7] Y.-H. Lee and S.-J. Horng, “Fast Parallel Chessboard
Distance Transform Algorithms", Proc. 1996 Intl. Conf. on
Parallel and Distributed Systems, 1996, 488-493.

Figure 8. Clock cycles of non-weighted distance algorithms
for problem P1.

50 x 103

(1) (2) (3) (4)

SISD

SIMD

SIMD
+

prefetch
L1

 40 x 103

 10 x 103

 20 x 103

 30 x 103

 0

SISD

SIMD

SIMD
+

prefetch
L1 (4) (3) (2) (1)

Figure 9. Clock cycles of weighted distance
algorithms for problem P1.

 40 x 103

 20 x 103

 30 x 103

 0

50 x 103

 10 x 103

[8] D.W. Paglieroni, “A Unified Distance Transform
Algorithm and Architecture”, Machine Vision And
Applications, 1992, 47-55.
[9] K.K. Parhi, VLSI Digital Signal Processing Systems:
Design and Implementation (New York, NY: J. Wiley &
Sons, 1999).
[10] Intel Corp., Intel Architecture Optimization, Intel
Corporation, 1999.
[11] J. Keshava and V. Pentkovski, “Pentium III Processor
Implementation Tradeoffs”, Intel Technology Journal, Intel
Corporation, 1999.
[12] J.H. Wolf III, “Programming Methods for the Pentium
III Processor’s Streaming SIMD Extensions using the VTune
Performance Enhacement Environment”, Intel Technology

Journal, Intel Corporation, 1999, pp. 1-11.
[13] J. Abel et al., “Applications Tuning for Streaming SIMD
Extensions”, Intel Technology Journal, Intel Corporation,
1999.
[14] Intel Corp., Intel C/C++ Compiler User’s Guide, Intel
Corporation, 1999.
[15] A.B.Moreno, A. Sánchez and J.F. Vélez, “Automatic
Location of 3D Feature Points in Facial Meshes”, Proc.
IASTED Intl. Symp. on Applied Informatics, Acta Press, 2001,
571-576.

	SIMD OPTIMIZATION OF EUCLIDEAN DISTANCE TRANSFORMS
	FOR PATTERN RECOGNITION
	
	3 Computer Science Department, New York University, 715 Broadway Room 719, NY, NY 10003, USA
	frias@cs.nyu.edu

	Abstract
	This paper describes a SIMD optimization method for computing different Euclidean distance algorithms. Distance transforms hav
	
	Keywords: Euclidean distance transforms, SIMD optimization, intrinsics, image analysis, pattern recognition.

	1. INTRODUCTION
	2. EUCLIDEAN DISTANCE TRANSFORMS
	In a 2D space, the exact Euclidean distance (DE) between two points with co-ordinates (x1, y1) and (x2, y2) is:
	3. PROPOSED OPTIMIZATION FRAMEWORK
	4. RECOGNITION BASED ON EUCLIDEAN DISTANCE TRANSFORMS

	5. EXPERIMENTAL RESULTS
	
	Table 1. Clock cycles and distance errors for distance formulas and Problems P1, P2 and P3.

	6. CONCLUSIONS
	REFERENCES

