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Abstract  

This paper describes a SIMD optimization method for 
computing different Euclidean distance algorithms. 
Distance transforms have been widely applied to image 
analysis and pattern recognition problems. The 
proposed approach is based on the inherent fine and 
medium-grain parallelism of considered distance 
algorithms and has been implemented using Intel 
Streaming SIMD Extensions (SSE), intrinsics and 
VTune Analyzer. Experimental results show that 
optimized prefetched SIMD algorithms improve by four 
the number of execution cycles in comparison with the  
initial SISD solutions. 
 
Keywords: Euclidean distance transforms, SIMD 
optimization, intrinsics, image analysis, pattern 
recognition. 

 
 
1. INTRODUCTION 

 
Numerous applications of distance transforms in 

image analysis and pattern recognition have been 
reported in the literature [1][2]. Euclidean distance 
transforms have been deeply studied and applied in 
research areas like medical image processing [3], 
computer graphics [4] and biometric pattern recognition 
[5]. In general, these domains are highly demanding 
both in terms of execution time and memory 
requirements. The volume of data to be processed is 
often large, and many times the results are useful only if 
they are available in real-time. Of course, an important 
part of these demands are handled by  hardware, but the 
use of software optimization tools combined with the 
development of improved algorithms for the considered 
computational problems is also very critical for the final 
optimized solution. Distance transforms algorithms, as 
needed in many image and pattern recognition 
problems, require such efficiency improvements.  

 

 
In general, these transforms are based on different 

distance functions. Euclidean distance transforms, which 
make use of the Euclidean metric to compute distances, 
are preferred in many applications because they are well 
known from classical geometry. The advantage of 
computing exact Euclidean distances is the fact that it is 
intuitively obvious. However, this distance transform is 
often regarded as a highly time-consuming operation 
due to square root and to its non-integer value. 
Consequently, other approximations to the exact 
Euclidean distance transforms have been proposed, such 
as square Euclidean, Manhattan, chessboard and 
Chamfer distances [1].  

 
Euclidean distance transforms have a linear time 

complexity in the number of pixels of the image (i.e. 
O(mn), for a m by n digital image). Many sequential 
algorithms [6] and theoretical parallel algorithms [7] for 
computing Euclidean distance transforms have been 
proposed. Furthermore, architectures that implement 
those algorithms have been developed [8]. 

 
In this paper, a parallelization technique for 

computing Euclidean distance transforms in pattern 
recognition applications, using the streaming SIMD 
extensions of Intel processors is presented. The 
proposed optimization approach also considers the 
characteristics of distance algorithms in real pattern 
recognition problems (i.e. high number of feature 
vectors with many data components) and tunes the 
solution to the target processor architecture. Rather than 
completely optimizing the distance algorithms, only the 
most critical parts (mainly nested loops) are vectorized 
to exploit the inherent fine-grain parallelism [9]. This 
has been done using VTune Performance Enhancement 
Environment [10]. Experimental results show significant 
cycle time improvements of our proposed parallelization 
approach when computing Euclidean distance 
transforms. 
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2. EUCLIDEAN DISTANCE 
TRANSFORMS 

In a 2D space, the exact Euclidean distance (DE) 
between two points with co-ordinates (x1, y1) and (x2, y2) 
is:     

 
 

   To simplify the highly complex calculation due to 
square root, the square Euclidean distance (DSE) can be 
computed as: 
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   The distance between two points can also be 
expressed as the minimum number of elementary steps 
to move from the starting point to the end point. Based 
on this idea other Euclidean distance transforms are 
usually defined. If only horizontal and vertical moves 
are allowed, the Manhattan or D4 distance (also called 
city-block) is obtained: 
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   If moves are also allowed in diagonal directions, 
chessboard distance or D8  is formulated as: 

 

 
A 3D graphical representation of these Euclidean 

distance transforms is shown in Figure 1. It can be seen 
that the surfaces defined by each distance transform are 
a sort of cones with sides that are radially symmetric. In 

many pattern recognition problems, the previous 
distance formulae are generalized for a m-dimensional 
space where m represents the pattern (feature) vector 
dimension.  
 
3. PROPOSED OPTIMIZATION 
FRAMEWORK 
 

This section outlines the issues taken into account to 
achieve the best  performance for computing Euclidean 
distance algorithms using Intel streaming SIMD 
extensions. Figure 2 sketches the proposed fine and 
medium-grained parallelization environment. 

 
     The different distance transform algorithms are 
written in C in the form of nested loop structures and a 
preliminary high-level optimization is performed. We 
have used Intel C/C++ Compiler and Pentium III 
processor with SSE extensions to work with floating-
point data. Source code analysis and tuning of the 
considered application has been done using VTuneTM 
Performance Analyzer (or VTune Analyzer) [10]. Next, 
we describe the elements of Figure 2. 
 
3.1. Streaming SIMD Extensions 

 
Pentium III processor from Intel is based on the P6 

microarchitecture. This processor added new extensions 
to the AI-32 instruction set such as streaming Single 
Instruction Multiple Data (SIMD) Extensions (SSE) 
[11][12][13]. SIMD operations allow code developers 
to perform an identical operation on multiple pieces of 
data in parallel. SSE added 68 new instructions, 
including 45 new floating-point operations, 11 SIMD 
integer instructions, and 5 cache-management 
instructions [11]. The Pentium III pipeline is twelve 
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Figure 1. (a) Euclidean, (b) Manhattan, (c) chessboard and (d) square Euclidean distances. 

(a) (b) 

(c) (d) 



stages long, and is a three way superscalar 
superpipeline. Out-of-order execution capability allows 
the concurrent execution of several instructions by 
considering the data dependencies and availability of 
resources. Data type available for SIMD-SSE is shown 
in Figure 3. It consists of a 128-bit packed floating point 
register which allows for four 32-bit floating point  
numbers to be packed into it. Other considered issues 
for optimization with the streaming SIMD Extensions 
are: SIMD and memory interactions, prefetch 
instructions, and optimizing memory use for array of 
data. 

 
3.2. VTune Analyzer 

 
VTune Analyzer [12] is a tool that gives a user a 

graphical view of the performance of an application, and 
it offers feedback on how to tune it. VTune Analyzer 
incorporates different code analysis techniques designed 
to optimize the source code: Sampling Analysis, Static 
Code Analysis, Dynamic Analysis, Code Coach, Call 
Graph Profiling and ‘Chronologies’. Event-based 
sampling analysis is the most commonly used method 
for analyzing application performance. It allows to 
display the execution time of considered instructions to 
detect program bottlenecks. Figure 4 shows a view of 
VTune’s Sampling Analyzer. The basic method of using 
Dynamic Analysis is to select a region of the code to be 
simulated.  

 
Then, VTune can indicate the number of cache misses 

in a loop and can suggest the use of prefetching. 
 
3.3. Intel C/C++ Compiler 

 
Intel C/C++ Compiler [14] is a highly-optimized 

compiler. It offers several options for programmers to 

use Streaming SIMD Extensions: inlined assembly, 
intrinsics, vector class libraries, and vectorization. We 
have mostly used intrinsics to optimize Euclidean 
distance algorithms. Intrinsics are C-like function calls 
for which compiler generates inlined code. Each 
intrinsic map to a specific SSE (or MMX) instruction 
[10]. 

 
The use of intrinsics introduces a data definition 

according to Figure 3. The data type is __m128. The 
most common intrinsics are: 

 
• __m128 mm_load_ps(float *mem), 
  Loads a __m128 variable from memory. 
• __m128 mm_add_ps(__m128 x, __m128 y), 
 Adds two __m128 values 
• __m128 mm_store_ps(float *mem, __m128 x), 
 Stores a __m128 variable in memory. 

 

4. RECOGNITION BASED ON 
EUCLIDEAN DISTANCE TRANSFORMS 

As an example of pattern recognition application 
requiring real-time computations, we used for our 
experiments data extracted from 3D facial meshes 
captured with a 3D range digitizer. The digitizer 
provides a large 3D point density of  scanned face 
surfaces which are illumination independent. After a 
preprocessing stage, most salient facial points are 
accurately computed (i.e. nasion, pronasale, etc.), and 
some local measures related to these 3D facial points 
are also obtained (i.e. median and Gaussian curvatures). 
With these data computed for each 3D facial surface, a 
database of normalized pattern (feature) vectors is 
defined [15].   
 

The considered pattern recognition problem, as shown 
in Figure 5, consists in determining the most similar 
feature database vector with respect to a reference 
vector (computed in a similar way from an unknown 
captured 3D face mesh), and the corresponding distance 
value.  
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Figure 3. SSE data type. 
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Figure 2. Description of the optimization framework 

Figure 4. VTune Analyzer:  source code 
view. 



It should be pointed out that the proposed 
optimization method can be applied to any pattern 
recognition problem using Euclidean distances.  

 
Let M be the number of feature vectors in the 

database and N the number of fixed features 
(characteristics) per vector. Each feature vector also 
contains an identification field, named ik (k∈[1..M]), 
which not takes part in the distance computation 
algorithm but allows an easy identification  of a given 
feature vector.  

 
Similarity between two vectors is computed via the 

usual Euclidean distance transforms: exact Euclidean, 
square Euclidean, Manhattan and chessboard, 
respectively.  

 
Two versions for each distance algorithms are 

implemented: non-weighted distance algorithms which 
means that all features are equally important, and 
weighted distance algorithms which assign different 
weights to features according to their discriminate 
power. Figure 6 sketches the initial C source code for 
solving the recognition problem using non-weighted 
Manhattan distances. Figure 7 shows the SIMD 
optimization of this previous algorithm which consists 
in computing four distance features in parallel using 

SSE extensions and intrinsics. 
 
Once calculated the distances between each 

corresponding pair of features from any database vector 
and reference vector, it is necessary to determine the  
total distance value between these two vectors by adding 
all partial distance values. This is also done in parallel 
by means of the following intrinsic instruction: 

 
*sse_aux3=_mm_add_ps(*sse_aux,*sse_aux2); 

 

5. EXPERIMENTAL RESULTS 

To test our proposed optimization approach for 
computing Euclidean distance transforms, we used 
different number of vectors and features. Let M be the 
number of feature vectors in the database and N the 
number of fixed features (characteristics) per vector. 

 
Three different problem instances have been 

considered: problem P1, where M = 100 and N = 16; 
problem P2, where M = 200 and N = 32; and problem 
P3, where M = 16 and N = 100. Feature values are 32-
bit floating-point values in the range [0.0..100.0] in 
millimetres. Figure 8 represents the total number of 
clock cycles for non-weighted distance algorithms for 
problem P1: (1) exact Euclidean, (2) Manhattan, (3) 
chessboard and (4) square Euclidean, respectively. For 
each distance algorithm, three execution times have 
been measured: SISD; SIMD and SIMD using L1 data 
cache (prefetch), respectively.  
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Figure 5. High level diagram of the considered recognition 
problem. 

for(i=0;i<M1;i++) 
   dist_cerc+=fabs(vec[i]-lista_vector[0][i]); 
pos=1; 
while (pos<N){ 
   dist=0.0; 
   for(i=0;i<M1;i++) 
      dist+=fabs(vec[i]-lista_vector[pos][i]); 
   if (dist<dist_cerc){ 
      dist_cerc=dist; 
      pos_enc=pos;       
      } 
   pos++; 
} 

Figure 6. C  pseudocode for non-weighted Manhattan distance. 

#include "xmmintrin.h" 
.... 
cte[0]=0x7fffffff; cte[1]=0x7fffffff; cte[2]=0x7fffffff; cte[3]=0x7fffffff; 
.... 
pos=1;   
while (pos<N){ 
   *(__m128*)aux=_mm_and_ps(_mm_sub_ps( 
      *(__m128*)&vec[0],*(__m128*)&lista_vector[pos][0]),*sse_cte); 
   *(__m128*)aux2=_mm_and_ps(_mm_sub_ps( 
      *(__m128*)&vec[4],*(__m128*)&lista_vector[pos][4]),*sse_cte); 
   *(__m128*)aux3=_mm_and_ps(_mm_sub_ps( 
        
*(__m128*)&vec[8],*(__m128*)&lista_vector[pos][8]),*sse_cte); 
   *(__m128*)aux4=_mm_and_ps(_mm_sub_ps( 
        
*(__m128*)&vec[12],*(__m128*)&lista_vector[pos][12]),*sse_cte); 
   
*(__m128*)aux5=_mm_add_ps(*(__m128*)aux,*(__m128*)aux2); 
   
*(__m128*)aux6=_mm_add_ps(*(__m128*)aux3,*(__m128*)aux4); 
   
*(__m128*)aux7=_mm_add_ps(*(__m128*)aux5,*(__m128*)aux6); 
   dist=aux7[0]+aux7[1]+aux7[2]+aux7[3]; 
   .... 
   pos++; 
} 
 

Figure 7. Fine-grain parallelization on non-weighted 
Manhattan distance (I). 



 
Figure 9 is similar to Figure 8, but now the 

corresponding weighted distance algorithms are 
considered. 

 

 
From the two previous figures, we can deduce that 

best execution results are achieved using square 
Euclidean and Manhattan distance transforms. Another 
consequence of the experiments is that optimized SIMD 
with prefetch solution approximately reduces by four the 
number of clock cycles with respect to the 
corresponding sequential SISD solution.  

 
To estimate the average error of different distance 

algorithms with respect to the exact Euclidean distance, 
the following error formula is used: 
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where M represents the number of pattern vectors in the 
database, E

jx is the exact Euclidean distance between 

vector j and reference vector, and d
jx is a similar 

distance value but considering other distance transforms 
(square Euclidean, Manhattan and chessboard, 
respectively).  

 
Table 1 shows the number of clock cycles and 

estimated errors for each distance transform using the 

considered problems P1, P2 and P3, respectively. A 
consequence of the results in Table 1 is that a better 
approximation distance to exact Euclidean distance 
requires a higher execution time. In the case when the 
number of features per vector increases (in problem P3), 
a trade-off solution is the use of chessboard distance 
transform algorithm which offers best ratio between 
execution time and average error with respect to exact 
Euclidean distance. 

 
 

 Square Euclid. Manhattan Chessboard Exact 
Euclid. 

 Cycles Error Cycles Error Cycles Error Cycles 
P1 8.6 7·108 9.6 1·105 10.1 8600 15.3 
P2 32.5 3·109 39.2 7·105 43.4 24000 42.3 
P3 8.7 3·1010 8.6 8·106 7.5 105 9.5 

Table 1. Clock cycles and distance errors for distance 
formulas and Problems P1, P2 and P3. 

 
 
6. CONCLUSIONS 

 
In this paper, we have presented a parallelization 

method based on Streaming SIMD Extensions for 
computing Euclidean distance transforms. Our approach 
provides a systematic methodology for optimizing many 
applications where exploitation of fine and medium-
grain SIMD parallelism is needed. Euclidean distance 
transforms have been properly tuned to the considered 
final architecture using the proposed SIMD optimization 
environment. The number of cycles per instruction when 
computing distances has been approximately reduced by 
four in the parallel SIMD solution using data prefetch in 
L1 cache with respect to the corresponding sequential 
SISD algorithm. Future work includes the 
parallelization of Chamfer distance transform using the 
proposed approach. Migration to Pentium 4 architecture 
using SSE2 extensions for the considered distance 
algorithms is now in progress. 
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