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Methodology

Spatial units and interpolation methods
Uniform interpolation method: Let v be the set of Voronoi polygons intersected with spatial unit u, vc
be the Voronoi polygon and nc be the footfall in cell tower c, the interpolated footfall nu,i=Uni using the
Uniform method for u is computed as follows:

nu,i=Uni =
∑
vc∈v

Area (Intersection (u, vc))
Area (vc)

· nc (1)

Population-based interpolation method: The population-based method requires information about
census population. Let the given census population distribution be at the census tract level, yx be the
shape and px be the population of the x-th census tract. The census population is assumed to be normally
distributed within yx, as no finer-grained information about population is available. Let S be an arbitrary
polygon e.g., a spatial unit or the intersection between a spatial unit and a Voronoi polygon. If S itself is
a census tract, the population of S is straightforward. That is one of the reasons why some researchers
prefer to use census tract as spatial units. But if S is not a census tract, then S intersects with a set of
census tracts denoted as y. The population of S is computed as:

Pop(S) =
∑
yx∈y

Area (Intersection (S, yx))
Area (yx)

· px (2)

Let v be the set of Voronoi polygons intersected with spatial unit u, vc be the Voronoi polygon and nc
be the footfall for cell tower c, the population-based method interpolates the footfall nu,i=Pop at a given
spatial unit u proportional to the population, instead of to the total area:

nu,i=Pop =
∑
vc∈v

Pop (Intersection (u, vc))
Pop (vc)

· nc (3)
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(a) Grids (b) Census tracts

Supp. Fig. 1. An example of grids intersecting with Voronoi polygons (the underlying grey polygons). The
locations of cell towers are represented as black triangles. Grids or census tracts in red, green and blue
intersect with three, two and one Voronoi polygons, respectively. For example, G1 intersects with Vor1 and
Vor2, G2 intersects with Vor2, CT1 intersects with Vor1 and Vor3 and CT2 intersects with Vor1.

Inverse distance weighting interpolation method: The distance between a spatial unit and a cell
tower is computed using their centroids. It is important to clarify that this method has only been used by
researchers in combination with grids, not census tracts (Peredo et al. 2017; Ahas et al. 2015). Given v as
the set of neighbor Voronoi polygons of spatial unit u, nc as the footfall for cell tower c, and d(u, vc) as
the distance between the centroids of u and vc, the interpolated population for u is computed as follows:

n∗u,i=Idw =

∑
vc∈v

1

d(u, vc)
nc∑

vc∈v
1

d(u, vc)

(4)

Let s(a,b) be the set of spatial units and v(a,b) be the set of Voronoi polygons intersecting with all
spatial units in city a under boundary setting b. Interpolating using inverse distance weighting does not
guarantee the sum of all n∗u,a=Idw for u ∈ s(a,b) to be the same as the sum of all nc for vc ∈ v(a,b) .
Therefore, we re-scale n∗u,a=Idw as follows:

nu,i=Idw = n∗u,i=Idw

∑
vc∈v(a,b) nc∑

u∈s(a,b) n∗u,i=Idw
(5)

Hotspot detection
Given a CDR dataset, the Loubar method will be applied as follows. We will first aggregate the number of
unique users for each cell tower c to obtain the average hourly number of unique users: nc = {nc,h}23h=0,
where nc,h represents the average of unique users between h:00:00 and h:59:59. Using equations (1) -
(5), we can calculate the interpolated population with method i for a spatial unit u: nu,i = {nu,i,h}23h=0.

Let s(a,b) be all the spatial units in city a, s(a,b)m be the spatial units in a municipality m in city a in
boundary setting b, and Ns,i,h = {nu,i,h}u∈s be the interpolated population using method i for a set
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Supp. Fig. 2. Loubar hotspot detection for a set of U spatial units with interpolated population. 1) the units
are sorted in ascending order by the population; 2) draw the Lorenz curve of the accumulated population with
x-axis being the ranking of units normalized by U ; 3) compute the intersection of the tangent line at x=1.0 (the
red line) and the x-axis. Let the intersection point be (X, 0); 4) The threshold δ is the population of the
U ∗ (1−X)th spatial unit; 5) all spatial units with population ≥ δ are the hotspots detected. The detailed
explanation of Loubar method can be found in Louail et al. (2014).

of spatial units s at hour h. We apply the Loubar hotspot detection method to Ns(a,b),i,h if b is Metro-
UR or Metro-U, or apply Loubar to N

s
(a,b)
m ,i,h

for each municipality m in city a if b is PerMuni-UR
or PerMuni-U to compute the threshold value δ and detect whether a spatial unit u is a hotspot at hour
h. Finally, a spatial unit will be identified as a hotspot if it is permanent i.e., it is considered a hotspot
throughout the 24 hours of the day (all-day) 1u,i,h = 1 for 0 ≤ h ≤ 23 (Louail et al. 2014). This binary
decision can be denoted as:

1u,i,h =

{
1, if nu,i,h ≥ δ
0, if nu,i,h < δ

(6)

However, since population density (Le Néchet 2012) and employment density (Giuliano and Small 1991)
are often used in quantitative geography, which roughly correspond to the presence of people during
nighttime and daytime, in this paper we will also explore home-hour and work-hour hotspots. These are
formally defined as permanent hotspots during working hours (9am-5pm) or home hours (10pm-5am)
i.e., 1u,i,h = 1 for hs ≤ h ≤ he with hs = 9 and he = 17 and with hs = 22 and he = 5, respectively.

Hotspot measurement variables
(1) Hotspot Scale quantified in terms of number and the total geographical area covered by the hotspots
detected:

• Number of hotspots (NHS) is the number of spatial units that are detected as hotspots. Let hs be
the set of hotspots and |hs| be the number of hotspots:

NHS = |hs| (7)
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• Area of hotspots (AHS) is the total geographical area of the spatial units that are detected as
hotspots. Let hs be the set of hotspots:

AHS =
∑
u∈hs

Area(u) (8)

(2) Urban sprawl

• Compacity coefficient (COMP) (Louail et al. 2014) measures the sprawl of the detected hotspots
over a city, with smaller COMP values associated to less dispersed hotspots with respect to the
size of the city. Let hs be the set of hotspots, |hs| be the number of hotspots and dj,k the distance
between the centroids of spatial units uj and uk, COMP is computed as:

COMP =
Dhs√

Area(ra,b)
,Dhs =

∑|hs|
j=1

∑|hs|
k=j+1 dj,k

|hs| (|hs| − 1)/2
(9)

• Mass Compacity coefficient (MCOMP) (Le Néchet 2012) is a modified compacity coefficient
that weights the distance between hotspots by the population of each spatial unit, and measures the
average distance between individuals located within the detected hotspots. The smaller MCOMP
is, the less dispersed the hotspots are with respect to the size and population of the city. Let pj be
the population in spatial unit uj , MCOMP is computed as follows:

MCOMP =
MDhs√

Area(ra,b)
,MDhs =

∑|hs|
j=1

∑|hs|
k=j+1 dj,k pj pk∑|hs|

j=1

∑|hs|
k=j+1 pj pk

(10)

(3) Urban compactness

• Cohesion (COHE) (Angel et al. 2010) is the ratio of the average distance-squared among all points
in the reference circle and the average distance-squared among all points in the hotspot areas. Large
cohesion means people in hotspot areas are very close to each other. Let hs be the set of hotspots,
AHS be the total geographic area of hs, p be the points of hs in the rasterized format, |p| be the
number of points and di,j be the distance between the i- and j-th point. The average distance-
squared among all points in the reference circle ≈ AHS/π. Finally, COHE is calculated as:

COHE =
AHS/π

2
|p|(|p|−1)

∑|p|
j=1

∑|p|
k=j+1 d

2
i,j

(11)

• Proximity (PROX) (Angel et al. 2010) is the ratio of the average distance from all points in the
reference circle to its centre and the average distance to the geometry center of the hotspot areas.
The proximity index focuses on the distance between points from the geometry center instead of
the point-wise distance in the cohesion index. Let hs be the set of hotspots, g be the center of
gravity of hs, AHS be the total geographic area of hs, p be the points of hs in the rasterized
format, |p| be the number of points and di,j be the distance between the i-th point and the center g.
The average distance of all points to the center in the reference circle = 2

3

√
AHS/π. Thus, PROX
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Supp. Fig. 3. 59 metropolitan areas in Mexico

is computed as:

PROX =
2
3

√
AHS/π

1
|p|

∑|p|
i=1 di

(12)

• Normalized moment of inertia (NMI) (Li et al. 2013) is based on the dispersion of points from
the center of its shape. It involves the calculation of the second moment of an area about a point,
also known as the moment of inertia (MI). The MI is then normalized by the MI of the reference
circle, hence normalized moment of inertia.

• Normalized mass moment of inertia (NMMI) (Li et al. 2014) takes into account the mass
distribution of a shape. The previous three compactness indices consider only the geometric shape
i.e., each point in the shape is equally important in the compactness. Nevertheless, in our case,
each hotspot might have a different estimated population or mass, and they can still be compact
- even though their geometry shape is not - by having the majority of the population concentrate
around the mass center. The reference circle in NMMI is no longer an equal-area circle, but a circle
with equal-effective-area. The calculation of NMI and NMMI are rather long. The mathematical
derivation can be found in (Li et al. 2013) and Li et al. (2014), respectively.

Results

Intra-city level analysis
The stability scores at the intra-city level for each hotspot index and across boundary settings are shown
in Supp. Fig. 5(a). Standard deviation values for each stability score - representing the spread of the
correlations among different combinations of spatial units and interpolation methods - are also shown.
From the Figure, we can observe that:

1) Hotspot scale and urban sprawl indices are more stable in Metro-based settings, while urban
compactness indices highest stability is achieved when using municipalities to define city boundaries.
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Supp. Fig. 4. Spearman correlation coefficient Coefind=PROX,b=Metro-UR,j,k between each pair of
combinations (Cj , Ck) for all-day permanent hotspots. The coefficient matrix is symmetric. The row mean is
the average of coefficients in each row, excluding the values on the diagonal. The row mean of j-th row shows
the average coefficients of combination Cj correlated with other combinations.

(a) 24-hour vector (b) 4-hour-bin vector

Supp. Fig. 5. Stability (Standard deviation) of all indices in different boundary settings. The coefficients in (a)
are computed using 24-hour vector of indices and in (b) are computed using 4-hour-bin vector. The gradient
background color is based on the stability score ranging from 0 to 1, the darker the orange color is, the closer it
is to 1.

Nevertheless, the impact of boundary settings is small for urban compactness indices. Based on these
findings, researchers could favour one type of indices versus others depending on the boundary settings
of interest, which would in turn produce more robust indices to measure hotspot rankings over time for a
given city.

2) The highest stability score is achieved by urban sprawl indices (COMP and MCOMP) under Metro-
UR and Metro-U boundary settings. This is different from the inter-city level stability analyses where
the best score was achieved with PerMuni-based settings. However, even the highest stability is only
moderately stable. AHS also has moderate stability under Metro-UR and Metro-U boundary settings.
The rest indices in all settings are weakly stable, much lower than the stability scores at the inter-city
level, indicating that a change in the boundary or spatial unit choice could produce widely different
results.

3) The intra-city stability scores per index are computed extracting permanent hourly hotspots i.e.,
hotspots that are considered as such throughout the 24 hours. As a result, the low stability scores could
be potentially due to the stringent definition of hotspot. To assess that, we grouped the 24 hours into
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6 bins - each bin is a 4-hour-bin - and computed the hotspot indices again. In this case, the Spearman
correlation was computed between two 6-bin vectors of coefficients - instead of the previous 24-hour
vectors. Supp. Fig. 5(b) shows that although the stability scores increase, except for the COMP index in
the Metro-based setting, they are still mostly weakly stable.

Finally, it is important to mention that although the index stability scores at the intra-city scale are on
average low, some cities do have much higher stability scores than others. This finding might be indicating
that, unlike inter-city scales, intra-city hotspots’ stability might depend on other types of cultural or social
trends not studied in this paper.

Discussion

Stability of urban compactness indices (COHE, PROX, NMI and NMMI) at the
inter-city level

Urban compactness indices, similarly to urban sprawl, are computed using the distance between the
detected hotspots. Therefore, these indices are subject to the same instability issues due to the various
ways in which population and footfall can be distributed across municipalities, and to the varying shapes
that Voronoi polygons might have in rural areas. Comparing Figures 3(e-h) and 3(i-l) (in the paper) we
can also observe that the correlation between Vor-based and other spatial combinations is much worse for
urban compactness indices than for urban sprawl indices. This is because compactness indices measure
the compactness of the shape of hotspots, and the varying nature of the Voronoi polygons causes the
Vor-based combinations to be weakly to no correlated with other combinations when the rural areas are
considered.

Difference of stability between home-hour and work-hour permanent hotspots at
inter-city level

There exists little difference in the stability of hotspot indices computed for home- and work-hour periods
across different city boundary settings. Nevertheless, it is worth noting that the stability scores for
COHE, PROX and NMI computed for home-hour periods are slightly more unstable than their work-
hour counterpart, especially in the Metro-UR setting. We argue that this might be due to the fact that
for some cities home locations are more spatially scattered, possibly including the outskirts where CT
and Vor polygons tend to be larger when compared to work locations in downtown areas that tend to
have smaller CT and Voronoi polygons. Thus, these varying area sizes in home location polygons might
be increasing the instability of the indices. See Supp. Fig. 6 for an example of this setting with city 10
(Tuxtla Gutiérrez), city 30 (Tepic) and city 32 (Oaxaca). The home-hour permanent hotspots are more
scattered than the work-hour permanent hotspots. Using (G, Pop), a few small grids away from the core
area in city 30 and 32 are considered as permanent hotspots. But using (Vor, Pop), the Voronoi polygons
away from the core area have large variation in size. The variation in size would have a huge impact
on the covered geographic area and subsequently on the equal-area circle considered in the compactness
indices. Therefore, COHE, PROX and NMI have slightly lower stability in home-hour period.
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(a) Work-hour permanent hotspots (b) Home-hour permanent hotspots

Supp. Fig. 6. Permanent hotspots detected by methods (CT, Pop), (G, Pop), (Vor, Pop) for city 10, city 30 and
city 32 in work and home hours under boundary setting b=Metro-UR

(a) Considering both urban and rural areas. (b) Considering urban areas only.

Supp. Fig. 7. Distribution of cell tower density over all metropolitan areas under different boundary settings.

Relationship between stability and cellular tower density at the inter-city level

The cellular towers that collect CDR data are not homogeneously distributed across space. Instead, urban
areas tend to have higher cellular density - more cellular towers per km2 - than rural areas due to the size
of the population they serve. Supp. Fig. 7 shows the cellular tower density, computed as the number of
cell towers per km2, across the urban and rural areas analyzed in this paper. We can in fact observe that
the cell tower density is much larger in urban areas. In this section, we explore whether the density of
cellular towers in spatial units is correlated to the variation of hotspot index measures computed under
different methodological choices, which would in turn affect the hotspot index stability. If correlated,
we could hypothesize that the hotspot index instability revealed for certain methodological combinations
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Metro-UR Metro-U PerMuni-UR PerMuni-U

NHS -0.50 *** -0.07 -0.00 -0.02
AHS -0.28 * 0.21 -0.12 0.25

COMP -0.18 -0.31 * -0.18 -0.10
MCOMP -0.15 -0.28 * -0.27 * -0.30 *

COHE -0.37 ** -0.38 ** -0.71 *** -0.17
PROX -0.29 * -0.22 -0.65 *** 0.06

NMI -0.37 ** -0.38 ** -0.71 *** -0.17
NMMI -0.42 *** -0.39 ** -0.56 *** -0.14

Supp. Table 1. Spearman correlation between variance of hotspot indices computed for different
combinations (of spatial units and interpolation methods) and tower density of metropolitan areas. Significance
levels: 0 ’***’; 0.001 ’**’; 0.01 ’*’; 0.05 ’ ’

might be partially due to the cellular tower density, since high variance in index measures leads to high
instability (diverse city rankings across settings).

To carry out this analysis, we propose the following approach. Given a boundary setting (Metro-
(U)R, PerMuni-(U)R) and a hotspot index (NHS, AHS, COMP, MCOMP, COHE, PROX, NMI, NMMI),
we compute the index value for each of the 7 combinations of spatial unit and interpolation method
((CT,Uni), (CT, Pop), (G, Uni), (G, Pop), (G, Idw), (Vor, Uni), (Vor, Pop)) and for each of the 59
metropolitan areas in our dataset. In other words, given a pair of boundary setting and hotspot index, we
will have 59 vectors - one per metropolitan area - each containing 7 values, one per combination of spatial
unit and interpolation method. Next, we compute the standard deviation across the 7 combinations for
each of the metropolitan areas to measure the variation of a hotspot index; and we perform the Spearman
correlation between cell tower density and hotspot index variation across all 59 metropolitan areas. For
hotspot indices computed under boundary settings Metro-UR and PerMuni-UR, we use cell tower density
considering both urban and rural areas; for hotspot indices computed under boundary setting Metro-U
and PerMuni-U, we use density considering only urban areas. The correlation results are shown in Supp.
Table 1.

The Table shows that most of the index variance is negatively correlated with cell tower density
(except for three cases); and that statistical significance is high in metro settings (Metro-U and Metro-
UR), settings that combine both urban and rural spatial units (Metro-UR and PerMuni-UR) and for all
compactness indices. Interestingly, the correlations were not significant in the PerMuni-U setting (except
for one value), which is the setting we have identified as providing the most stable hotspot indices.
Overall, these results reveal that the higher the cell tower density, the lower the index variance, thus
increasing index stability. Given that the correlation coefficients reflect a weak to moderate correlation,
it is fair to say that part of the instability of the hotpot indices reported in the paper, might be due to the
coarse-grained spatial information computed in spatial units with low cellular tower densities.
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