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Abstract. This paper presents a real-time full -programmable fuzzy com-
piler based on piecewise linear interpolation techniques designed to be exe-
cuted in SIMD (Single Instruction Multiple Data) architectures. A full -
programmable fuzzy processor is defined as a system where the set of rules, the
membership functions, the t-norm, the t-conorm, the aggregation operator, the
propagation operator, and the defuzzyfication algorithm can be defined by any
valid algorithm. The SIMD platforms selected are the Intel Pentium III ( using
the SSE set of instructions) and the Texas Instruments TI DSP C6x family. The
final speed obtained in both implementations is highly satisfactory and better
than the speed provided by standard specific hardware.

1 Introduction

Fuzzy logic has been successfully introduced in a wide range of applications, ranging
from classical control systems to decision support systems like nuclear plant supervi-
sion [12], medical applications [40] or automotive applications [7].  A wide variety of
fuzzy logic applications are described in [1,17]. Nevertheless, two are the main draw-
backs of fuzzy logic solutions: (1) the processing speed and (2) the limited program-
mable capabiliti es of both the specific platforms and the design environments.

The need to process fuzzy knowledge base systems with high speed resulted in the
development of fuzzy hardware architectures. The first developments were done in
the mid-80's by Togai [34] using a digital architecture, and by Yamakawa [36] using
analog techniques. Before that, other ASICs designed to process fuzzy knowledge
bases with high speed where developed [6,25]. During the mid-90’s due to the ad-
vance in the performance of standard architectures, it became possible to use them as
a platform for high speed fuzzy processing. In order to obtain the maximum perform-
ance possible in standard architectures fuzzy compilers where developed [23,39].
These compilers are based in the idea that the fuzzy syntax of the rules is a useful
way of representing knowledge, and the fuzzy algorithm is a useful way of processing



it, but they are not the best way of processing a fuzzy logic system in a standard ar-
chitecture. In order to process fuzzy systems with high speed in standard architectures
it is needed a compilation from the fuzzy system syntax to a syntax suitable for a
standard architecture.

The design characteristics of a fuzzy system are application dependent. Different
applications will require different T-norm, different membership functions, or differ-
ent defuzzyfication algorithms. Besides, the same problem can be solved by different
designers using fuzzy systems with different characteristics (different membership
functions, different inference mechanism, or different defuzzyfication algorithms, for
example). Nevertheless, a common characteristic to almost all fuzzy coprocessors is
that only the set of rules and the membership functions of the system can be defined,
while the fuzzy algorithm is implemented by hardware, and can not be programmed.
This problem is also present in fuzzy compilers; they are designed for a specific fuzzy
system (usually Takagi-Sugeno (TS) [22,39]) and, again, only rules and membership
functions can be defined. Some fuzzy logic IDE (Integrated Development Environ-
ments) do allow programmable capabilities, but the final inference mechanism ob-
tained does not provide high-speed processing.

In this paper a full-programmable fuzzy system is defined as a system where the
rules, membership functions, the t-norm, the t-conorm, the propagation operator, the
aggregation operator, and the defuzzyfication algorithm can be defined. A full-
programmable fuzzy compiler will allow to execute any kind of application using
standard hardware.

The platforms selected for the implementation of the proposed compiler are Intel
Pentium III [16] and the Texas Instruments DSP C6x family (C6201 [30] and C6701
[30]). These two families are, respectively, good examples of a microprocessor and of
a digital signal processor architecture, which are the typical platforms for the execu-
tion of fuzzy logic systems. Also both platforms have SIMD architectures which
make them ideal to execute the proposed compiler.

In the rest of the paper, first the objectives and the related work are described. Next
a full-programmable fuzzy compiler and its implementation on SIMD architectures is
introduced. In the last section, the characteristics of the controller implemented are
compared with other implementations.

2 Objectives and Related Work

The main objective is the design of a high performance, full programmable compiler
for fuzzy systems. This goal makes the model to be involved in two fundamental
aspects: first, full programmability and, second, high performance in standard archi-
tectures.

Full programmability means to be able to define absolutely all the processes that a
fuzzy controller is able to carry out. That definition consists on determining the algo-
rithm that characterizes each process. The programmable characteristics should be:
(1) membership functions (any kind of membership function should be possible with



the only constrain of being fuzzy numbers), (2) T-norm and T-conorm, (3) propaga-
tion operator, (4) aggregation operator and (5) defuzzyfication  algorithm.

On the other hand, the term high performance is a time-varying concept depending
on the current technological state: nowadays, we may assume that it is acceptable to
have an execution speed of the order of tenths of MFLIPS.  With a response time in
the order of nanoseconds, it is ensured the possibility to serve a majority of applica-
tions, as shown in [4].

Some authors have already presented the idea of using a compiler to execute a
fuzzy system. In [22,23] a compiler is presented, based on interpolation for TS sys-
tems with membership functions with an overlap factor of two. The ASIC imple-
mentation of this compiler achieves 2 MFLIPS. In [39] it is presented a coprocessor,
the FZP-0401A, based on the compilation of the knowledge base also for TS systems
that has a processing speed of 0.48 MFLIPS.

Although the concept of compiler has already been used, as far as we know, no
compiler has been developed for full-programmable fuzzy systems. The development
of such a compiler can be done using the concept of Approximate Fuzzy Compila-
tion.

3 Approximate Fuzzy Compilation

Standard architectures are not adequate for high performance fuzzy processing, be-
cause their structure has been designed for numerical applications and, tough fuzzy
inference is usually made in a digital way by fuzzy coprocessors, the nature of the
treated information is not essentially numerical. Consequently, our purpose is to in-
troduce a previous compilation of the original fuzzy system in order to adapt it to the
operations usually made by a high performance standard processor.

Fig. 1: Concept of Approximate Fuzzy Compilation.

As shown in Fig. 1, the compiler starts from the specification of an n-dimensional
fuzzy system (FS), defined by the vector:

FS=(Tn,Tc,PO,AO,D,R ,MFi,MFo,M,I,O) (1)

where Tn is the T-norm of the system, Tc is the T-conorm, PO is the Propagation Op-
erator, AO is the Agregation Operator, D is the Defuzzyfication algorithm, R is the set
of Rules of the system, MFi are the set of Membership Functions of each input ,
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i=1,...,n, defined as fuzzy numbers, MFo are the Membership Functions of the lin-
guistic labels defined on each output, I=(I1,…,In) is the vector of inputs of the system,
and O=(O1,…,On) is the vector of the outputs of the system.

The compiler extracts an Approximated Fuzzy System (AFS) characterised by
mathematical structures able to make a fast evaluation of the system.

The control surface (CS) is the output of the system for any input values inside the
universe of discourse. The main condition that must fulfil a fuzzy model is the abilit y
to generate a control surface CS’ such that,

CS’ ≈ CS (2)

Indeed, what becomes important under the point of view of a fuzzy model is to be-
have as close as possible to the fuzzy system. Although the output of the approximate
system is not exactly the same, this is not relevant since a fuzzy controller is not con-
ceived as a precise system. The designer determines the output of the system only in a
reduced set of well -selected samples and the rest of the output is obtained as a coher-
ent mix of them. Taking into account these ideas, the compiler must keep the value of
the system in the points given by the designer in the fuzzy knowledge base, but can
obtain an approximation for the rest of the points for which no value was specified.
The compiler will preserve the certainty of the designer in the Approximate Fuzzy
System obtained.

The concept of certainty in this context is related with the design of the fuzzy
membership functions. For any given membership function, the kernel represents the
set of points for which the designer has a complete certainty of the output of the sys-
tem. The compiler will preserve the output value of these inputs. For the rest of the
points, where the membership function goes from 0 to 1 or vice-versa, the designer
has only a partial certainty of the output of the system. In these points the compiler
can produce an approximation.

In fact, many fuzzy systems are type-2 [19,21] fuzzy logic systems (FS). In these
kind of systems uncertainty is modelled using the third dimension of type-2 fuzzy
sets. A type-2 FS is able to consider uncertainties about measurements, rule labels of
antecedents and consequents, fuzzy logical operators in use, etc. When all uncertain-
ties disappear, then a type-2 FS reduces to a type-1 FS. Although a complete theory of
type-2 fuzzy logic systems exists for general type-2 fuzzy sets, it is only for interval
type-2 fuzzy sets that type-2 FSs are commonly practical. This paper uses this uncer-
tainty as a positive factor to reduce the complexity of the corresponding approximate
fuzzy algorithms.

More formally, the control surface CS of an interval type-2 FS can be modeled by
an interval function F:

F: x → (z1 , z2) (3)

where x is the multivariate input of the MISO system considered and (z1 , z2) is the
corresponding output interval.

To implement this interval fuzzy function F an approximation function F´ is de-
fined:



F´: x → z0 (4)

such  that z0 ∈ (z1 , z2). This approximation is good enough in many practical applica-
tions. The main advantage of this consideration is that some functions F´ can be mod-
eled in many circumstances with a much more simple structure than the original
fuzzy function.

A very simple approximator to implement is the multilinear interpolator that is
well-known in finite elements analysis and computer graphics. Multilinear interpola-
tors are simple extensions of linear ones to the multidimensional case, and are defined
by a sequence of linear interpolations.

These multilinear interpolators can also be specified in a fuzzy way by means of a
product-sum TS fuzzy system with triangular fuzzy partitions on the antecedents
domain [8,18]. Moreover, it is possible to use the referred characteristic points of the
specified antecedent partitions: interval corners of support and core of the corre-
sponding antecedents, to directly specify each initial approximate triangular fuzzy
partition. The corresponding domain points can also be considered such a suitable
nonuniform sampling of the specified fuzzy rule system, and the values of output
function on these characteristic grid points are used to define the approximate multi-
variate TS system considered:

{R i: If x is Ni then  z is zi}   (5)

where Ni is the corresponding multivariate second order pyramidal spline and  zi is
the corresponding output function in the multidimensional sampling point i.

The next section presents the derived model to efficiently compute this TS system
in a standard processor architecture.

4 High-Performance Full-Programmable Fuzzy Model

The developed Fuzzy Model has been structured in two steps, the first one compila-
tion and the second one, execution. The compilation step transforms the original
fuzzy system (FS) into an equivalent approximate fuzzy system (AFS) capable of
being executed in real time in a standard architecture and keeping the relevant infor-
mation of the original fuzzy system. The execution step describes how the output is
computed using the information obtained in the compilation step.

4.1 Full-Programmable Fuzzy Compiler

Let a fuzzy system FS be defined by a vector as stated in (1).



4.1.1 Definitions of some useful functions and spaces

In this section a set of functions and spaces are defined in order to make easier the
description of the model:

• For(V). Let V=(A1,…, Ap) be a vector with Ai∈R. For( V ) sorts the components Ai in
ascendant order, obtaining the output V' ={A1́,…, A'p} with A'1<…< A'p.

• Fe(V). Let V=(A1,…, Ap) be a vector with Ai∈R. Fe(V) takes out the components of
V which are repeated and  generates a new vector V' =(A'1,…, A'l) with A'1≠…≠A'l.

• Fi(V). Let V=(A1,…, Ap) be a vector with Ai∈R. Fi(V) obtains the intervals of vec-
tor V:

Fi(A1,…, Ap)=([A1,A2),…, [Ap-1,Ap)). (6)

• Card(A). Gives the cardinality of the parameter A.
• S. Is the input space of the fuzzy system FS.
• Kernele(A). Obtains the two extreme points that define the kernel of A.
• Suppe(A). Obtains the two extreme points that define the support of A.

4.1.2 Partition of the input space S

Rule activation depends on the region in which the inputs are included. Consequently,
it is important  to make a coherent partition of the input space, accordingly to the
position of the linguistic labels.

We define the Activation Points of the input Ii, APi,, with i=1,…,n , as the set of
points determined by the extreme points of the kernels and supports of each member-
ship function of Ii, in ascendant order. Using the functions defined in 4.1.1, we can
express the Activation Points as:
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 The Activation Intervals of an input I i, AI i, is defined as the intervals of the Acti-
vation Points:

( )iii APAI F= . (8)

 Let FS be a fuzzy system with activation intervals AI = {AI1, ··· , AIn} of the input
variables I={I1, ··· , In}, and S the n-dimensional input space defined by the vector I of



inputs. The partition P of the input space S of the system is defined as the cartesian
product of the elements of AI:

1

.
n

i
i

P AI
=

= × (9)

The next step of the model obtains the output of the FS in the vertex that define the
cells of the partition P. Starting from these values, we construct the approximate
control surface CS’ . The number of cells of the partition P is given by the following
expression:
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Each one of the cells in P, Pk, is determined by 2n vertex, being n the dimension of
the system, n = Card(I). Calli ng VP the total number of the vertexes of P, we can
write the following expression:
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k
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4.1.3 Characteristic Matrix of the fuzzy system FS

We define the Vertex Matrix V of a fuzzy system FS, as the matrix that contains the
vertexes of partition P. The Characteristic Matrix CM is defined as the n-dimensional
matrix containing the output of the FS in the vertexes of partition P. Being Dimi =
Card(APi), the number of elements of the activation points of the dimension i, the
element Va1, ··.,an of V can be written as follows:

( )
1 1, , 1, ,, , .

n na a a n aV AP AP⋅⋅⋅ = ⋅⋅ ⋅ (12)

Consequently, V can be expressed as the Cartesian product of the activation points
APi of each input to the FS:
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Each vertex Va1,···,an in V is an identifier of a cell Pk of the partition P, where k is
obtained as:
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with a1 =1 ··· Card(AP1)-1, …, a n =1 ··· Card(APn)-1. The cell Pk is defined by the set
of vertexes VEk,:

( )1,...,1,1,...,1,,...,,1,...,, 21212121
,...,,, +++++=

nnnn aaaaaaaaaaaak VVVVVE (15)

The Characteristic Matrix CM is obtained as the output of FS in each element of V:

( )
1 2 1 2, ,···, , ,···, .

n na a a a a aCM FS V= (16)

In order to accelerate the execution, the compilation phase defines two more func-
tions: Equalisation (E) and Normalisation (N).

4.1.4 Equalisation of the inputs of the system

Let I=(I1,I2,…,I n) be the vector of inputs of the fuzzy system FS. We define the equali-
sation of the dimension k (k = 1,···,n) as the natural number indicating the activation
interval AIk in which the input Ik is found. Consequently, being j=Card(APk) for each
input Ik, the Equalisation Function Ek(Ik)  is defined as follows:
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j I A Ik k j
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(17)

Fig. 2 presents a graphical representation of the function Ek(Ik).

Fig. 2: Equalisation function Ek(Ik)

The Equalisation Vector E is defined as the set of all the equalisation functions:

E=(E1(I1),…,E n(In)). (18)
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In the same way, the Equalisation Vector of an input I, E(I), is defined as the set of
values of the equalisation functions for that input:

E(I)=(E1(I1),…,E n(In)) = (a1,a2,···, an), (19)

The Equalisation Vector of I identifies the cell Pk of partition P in which the input
I is included, as stated in (14) and (15).

4.1.5 Normalisation Functions

The objective of the normalisation functions is to make all inputs to be normalised in
the range [0,1) in each activation interval.

Each coefficient ak of (19) points to the activation interval of Ik which is currently
active. Being [A,B) the activation interval ak of Ik, the Normalisation Function of Ik in
the activation interval ak is defined as follows:
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For each input Ik of the input vector I, there will be Card(AIk) normalisation func-
tions. Nk(Ik) is defined as a vector containing all the normalisation functions of Ik:

( ) ( ) ( ) ( )( ),1 ,, , .
kk k k k kk Card AIN I N I N I= ⋅⋅ ⋅ (21)

The Normalisation Matrix (N) is defined as the set of all normalisation functions:

( ) ( )( )1 1 , , .n nN N I N I= ⋅⋅ ⋅ (22)

Finally, as it was the case for the equalisation functions, the Normalisation Vector
of the input I, N(I), is defined as the vector obtained after applying the respective
normalisation functions to each one of the dimensions of the input vector I:

( ) ( ) ( )( )nana INININ
n,1,1 ,,

1
⋅⋅⋅= (23)

where, as stated in (19), (a1,a2,···, an) represent both, the activation intervals of I, and
the vertex of the cell in which the input I is included.

4.1.6 Approximate Fuzzy System

As a product of the compilation we obtain three items:

1. Characteristic Matrix (CM) described in 4.1.3, expression (16)
2. Equalisation Vector defined in (18): E={E1(I1),…,E n(In)}



3. Normalization Matriz defined in (22): N ={N1(I1), …,N n(In)}

The set of these three items constitutes the so called Approximate Fuzzy System
(AFS) of the original Fuzzy System FS:

AFS = {MC, E, N}. (24)

4.2 Execution Step of the Full-programmable Fuzzy System

Once the AFS has been obtained, the first step for the computation of the output of
the model is to get the relevant information. With this purpose, it is necessary to cal-
culate the equalisation vector E(I) of the input I using (19). Using the equalisation
vector E(I) as an index in the characteristic matrix CM, the outputs of FS for the ver-
texes of the cell Pk in which the input I is included are obtained.

We define the Characteristic Vector CV(I) of the input I, as the set of values of
the output of the FS on the vertexes of the cell Pk in which the input I is included:

( ) ( )1,,,,,1,,,,1,,, 21212121
,,,, +⋅⋅⋅⋅⋅⋅+⋅⋅⋅+⋅⋅⋅ ⋅⋅⋅=

nnnn aaaaaaaaaaaa CMCMCMCMICV (25)

The vector (a1,a2,···, an), has the necessary information to obtain N(I) applying (23):

( ) ( ) ( ) ( )( )naaa ININININ
n,12,11,1 ,,,

21
⋅⋅⋅= (26)

The Approximate Fuzzy System Function of the input I, AFS(I), is defined as the
computation of the Characteristic Vector CV(I) and the Normalisation Vector N(I)
making use of the information provided by the Approximate Fuzzy System AFS:

( ) ( ) ( ){ }INICVIAFS ,= (27)

The second step of the execution phase, obtains the output of the system using the
data obtained in (27). Being O be the output of the model, O is obtained as:

( )( ) ( ) ( )( )INICVFIAFSFO OO ,== (28)

where FO is the Approximation Function that produces the output that the model pro-
vides. The High-performance Full-programmable Fuzzy Model, or Model M for
short, is defined as a tuple formed by AFS and FO:

{ }, .OM AFS F= (29)



4.2.1 Choosing the Approximation Function FO

The Approximation Function FO should verify the following characteristics:

�  FO must be defined as:

( ) RRRF nn
O →,2   (30)

�  The result of FO for an input I must be as near to the original FS as possible:
( ) ( )( )IAFSFIFS O≈ (31)

�  FO must be able to be efficiently implemented in a SIMD architecture.

The most immediate Approximation Function FO that fulfills these premises is
Multi-linear Interpolation.

4.3 Generalisation of the Model M to Multiple Output Systems

Let FS=(Tn,Tc,PO,AO,D,R,MFi,MFo,M,I,O) be a multiple output (MIMO) fuzzy sys-
tem, with O = (O1, ··· , Om), where m is the number of outputs. The adaptation of the
Model M to the MIMO FS consists on considering the original FS as composed by m
fuzzy systems:

FS1=(Tn,Tc,PO,AO,D,R ,MFi,MFo,M,I,O1)
... (32)

FSm=(Tn,Tc,PO,AO,D,R ,MFi,MFo,M,I,Om)

From each one of the fuzzy systems {FS1, ···, FSm} an associated model is ob-
tained:

( ) ( )OmmO FAFSMFAFSM ,,11 =⋅⋅⋅= . (33)

Consequently, the Model M of the MIMO FS is given by the set of all the sub-
models:

{ }mMMM ,,1 ⋅⋅⋅= . (34)

4.4 Validation of the Model M: The Model M as a Takagi-Sugeno Compiler

The validity of the model M can be proved demonstrating that it produces an ap-
proximation of the control surface CS as stated in (2), and that this approximation can



be made as close to the original surface as needed. The proof consists only on proving
that  the proposed compiler provides a Takagi-Sugeno system.

The fact that the Model M provides an approximation to the original CS of FS is
based on the following results:

�  A Zero-order Takagi-Sugeno system with triangular linguistic labels, unity
partition, overlapping factor of two, product as T-norm and weighted sum as
T-conorm is a multi-linear interpolator. This result can be found, for example,
in [18].

�  A Zero-order Takagi-Sugeno system with triangular linguistic labels, unity
fuzzy partition, overlapping factor of two, product as T-norm and weighted
sum as T-conorm, is a universal approximator. Castro [3] demonstrated that
Takagi-Sugeno systems, as well as many others, are universal approximators.
Similar results may be seen in [20,37,38].

Starting from those results the proof is immediate: as stated in [18] a zero order
Takagi-Sugeno system with triangular linguistic labels, unity fuzzy partition, over-
lapping factor of two and product-sum as T-norm and T-conorm respectively, is
equivalent to carrying out a multi-linear interpolation.

The Model M uses multilinear interpolation as the Approximation Function FO in
each cell Pk of the input space. Consequently, in all those cells it is possible to obtain
an equivalent Takagi-Sugeno system with the previous characteristics.

Fig. 3: Takagi-Sugeno System generated in a concrete cell.

For a system of two inputs, Fig. 3 shows a cell Pk of P with the linguistic labels of
the equivalent Takagi-Sugeno system and the output of the FS in the vertexes of the
cell. The four rules which would define the equivalent Takagi-Sugeno system are the
following ones:

If I1 is Ek and I2 is Ep  then  Z = CMk,p

If I1 is Ek+1 and I2 is Ep  then  Z = CMk+1,p

If I1 is Ek and I2 is Ep+1  then  Z = CMk,p+1

If I1 is Ek+1 and I2 is Ep+1  then  Z = CMk+1,p+1

(35)
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Making a generalisation of these concepts, the conclusion  is that it is possible to
get the equivalent Takagi-Sugeno system for all the cells derived from the compila-
tion step of the Model M, using partition P and the characteristic matrix CM. The
Model M provides a Takagi-Sugeno system which, according to [3], is a universal
approximator. Then, the Model M is a universal approximator.

As a particular example, any zero-order Takagi-Sugeno system with triangular lin-
guistic labels and overlapping factor of two is approximated by the Model M without
error.

4.5 Estimations of the Model M

Once the Model M has been defined, it is important to evaluate the computational
cost. With this purpose, the most important parameters are the amount of memory
needed to store the data structures generated by the model M, and the execution time.

If we call B the number of bytes of a real number or an integer in the chosen ar-
chitecture, the amount of necessary memory will be given by:

( )∏
=

=
n

i
iAPBMem

1
1 Card . (36)

In the case of having the Equalisation and Normalisation Functions digitised, they
would involve tables of memory. Let pi (i = 1, ···, n) be the number of bytes used by
the sensors of every one of the inputs of the system, B1 and B2 the size in bytes of the
equalisation and the normalisation of an input, and n the dimension of the system, the
amount of necessary memory to keep the tables of digitisation Mdig would be:

( )∑
=

+=
n

i

p
dig BBM i

1
212 . (37)

The execution time of the model M is highly dependent on the Approximation
Function FO employed. The values given in this analysis are referred to multi-linear
interpolation. The number of interpolations to be made in an n-dimensional system
equals 2n-1. Consequently, being τ the processing time for a single interpolation, the
total amount of time T1 necessary to carry out the multi-linear interpolation will be:

( )121 −= nT τ . (38)

The estimation of τ may be done as the addition of the processing time of a prod-
uct, an addition and a substraction:

subsumprod ττττ ++= . (39)



In order to estimate the latency to obtain the characteristic vector CV(I) and the
normalisation vector N(I), we will distinguish between discrete inference engines and
non-discrete inference engines. Being c the evaluation time of an equalisation func-
tion, p the evaluation time of a normalisation function and l the access time to mem-
ory, the total amount of time T to obtain the output in a non-discrete engine is:

lnpncTT n21 +++= . (40)

In the case of discrete engines, the evaluation time of the equalisation and normali-
sation functions is reduced to a single memory access:

lnlTT n21 ++= . (41)

However, as it will be described latter, if the architecture of the processor is suita-
bly designed and a cache memory is installed in order to keep the last accessed val-
ues,  the evaluation time of N(I) and CV(I) become negligible. In this case, the total
amount of time necessary to get the output T, is reduced to the latency of the multi-
linear interpolation:

1TT = . (42)

This reveals the crucial importance of the computational efficiency of the ap-
proximation function FO.

Taking into account (36) and (37), it is easy to see that the amount of memory
grows exponentially with the number n of dimensions of the system, and also linearly
with the number of activation points of each dimension. Similarly, the execution time
also grows exponentially with the number of dimensions. Thus, the number of dimen-
sions presents a serious problem, since the model could become unfeasible. Of
course, this is not an exclusive problem for the Model M, but for all the fuzzy models,
being especially critical for real-time applications.

However, in a practical system, that kind of problems are usually avoided, since
complex systems are generally designed in a tree structure of smaller sub-controllers.
This makes the memory to grow linearly instead of exponentially with the dimension
of the system. Concerning to execution time, the tree structure provides such a degree
of parallelism that increment is linear with the dimension of the system.

5 Architecture of the Controller

The controller implemented is divided in four modules: the Sensor, which receives
the input of the system and produces de Equaliaation and Linealization of that input,
the Interpolation Cache, which contains also the Model Memory and the Inference
Engine, which from the Interpolation Values obtained by the Interpolation Cache



produces the output of the system. The architecture of these components is presented
in Fig. 4.

Fig. 4: Interconnection of the modules of the Controller

Sensor
The sensor implements the set of Equalization and Normalization functions, Ek(Ik),
Nk,p(Ik). From the input of the system I, the sensor obtains (a1,...,an) and N(I).

Memory Model
The Memory Model stores the Characteristic Matrix of the system, CM.

Interpolation Cache
The Interpolation Cache receives the equalization and the normalization of the input,
(a1,...,an) and N(I). From the equalization of the input, it obtains the Characteristic
Vector CV accessing the Memory Model.

Due to the locality of the inputs, if an input is in a cell Pk, the most probable situa-
tion is that the next input of the system I will be in the same cell Pk. This means that
the Inference Engine will have to work with the same Characteristic Vector as in the
previous inference, so the Interpolation Cache does not need to access the Memory
Model to obtain it. The output of the interpolation cache is the Characteristic Vector
CV and the normalization of the input.

5.1 Inference Engine on Intel Pentium III

The inference engine receives the Characteristic Vector CV and the normalization of
the input N(I) and obtains the output O applying multilinear interpolation. Two dif-
ferent versions of the inference engine have been implemented for Pentium III: the
first one is based on the compiler optimization capabilities and the second one uses
the set of SSE instructions of the processor.

5.1.1 Inference Engine using Compiler Optimizations

This implementation directly codes the multi-lineal interpolation and uses the optimi-
zations of the C compiler [15] to produce efficient code. In order to obtain optimum



performance, Vtune Performance Analyzer [16] has been used. Also, some rules have
been considered when developing the code:

�  Unwind of the existing loops to increase the execution speed.
�  To gather the calculations for a better use of the temporal values [35]. Intel C

compiler is capable to minimise the number of memory accesses, and optimise
the use of temporal variables. Because of that, the calculation of the output of
the system is carried out in a single line of code. The compiler will generate
the optimal structure in assembler language.

Table 1: Measurements of the model M in an Intel Pentium III 1GHz

System Time MFRPS MFLIPS
2 Inputs / 1 Output 8.67 ns 5390 111
3 Inputs / 1 Output 12.98 ns 26675 77
4 Inputs / 1 Output 28.97 ns 80025 33

Table 1 presents the values of the inference engine in a Intel Pentium III 1GHz
processor. The number of MFRPS (Mega Fuzzy Rules Per Second) has been made
assuming seven linguistic labels per input and a complete rule-base.

The maximum number of clock cycles per interpolation is three. This happens in
the case of two inputs systems becuase the number of operations to be made is not
enough to exploit all the resources of the processor. Being n the number of inputs, m
the number of outputs, and f the clock rate, the upper bound of the execution time T
is:

( )( ) )ns.(123 1 mfT n ⋅−∗≤ − (43)

5.1.2 Inference Engine Using the SSE instructions

The SSE set of instructions [15] of an Intel Pentium III is an excellent environment to
implement a multi-linear interpolation. This can be done using the SIMD [26] archi-
tecture of the processor.

The Pentium III processor has a 128 bit register which can be accessed as a
__mm128 data type. This data type can be also viewed as four 32 bit registers. Using
this structure, one operation can be done in parallel to four different data, as can be
seen in Fig. 5.



Fig. 5: SIMD data structure of a Pentium III

To access and operate with __m128 data Intel Compiler has a set of intrinsics [15].
An intrinsic is a C function that directly translates into an assembler operation that
can not be obtained using standard C code. Table 2 has examples of some intrinsics.

Table 2: Example of Intrinsics.
Intrinsic Description

__m128 _mm_mul_ps (__m128 x, __m128 y) Multiplies two _m128 data
__m128 __mm_add_ps(__m128 x, __m128 y) Adds two _m128 data

The code presented in Fig. 6 implements four inference engines (one in each ele-
ment of the SIMD vector) of two inputs and one output, using the set of SSE instruc-
tions.

OutputG.OutputI=_mm_add_ps(_mm_add_ps(CV_G.CV_I[0],
_mm_mul_ps(N_G.N_I[1],_mm_sub_ps(CV_G.CV_I[1],CV_G.CV_I[0])))
,_mm_mul_ps(N_G.N_I[0],_mm_sub_ps(_mm_add_ps(CV_G.CV_I[2],
_mm_mul_ps(N_G.N_I[1],_mm_sub_ps(CV_G.CV_I[3],CV_G.CV_I[2])))
,_mm_add_ps(CV_G.CV_I[0],_mm_mul_ps(N_G.N_I[1],
_mm_sub_ps(CV_G.CV_I[1],CV_G.CV_I[0]))))));

Fig. 6: Code of the inference engines

where OutputG is the output of the system, CV_G is the Characteristic Vector of the
input, and N_G the normalization vector.

The feedback of the controller the controller will be given by the architecture of
the implemented fuzzy system. This makes possible that the code given in 6 can im-
plement different architectures. Some examples can be: four controllers of 2 inputs-1
output, 1 controller of 8 inputs-4 outputs, 1 controller of 5 inputs- 1 output, etc.

Each inference engine implemented in 6 has a speed of 55 MFLIPS for a 2-
inputs/1-output system. This gives a total throughput of 220 MFLIPS in a Pentium III
1 GHz. (55 MFLIPS each inference system multiplied by 4 inference engines imple-
mented). Table 3 presents the speed obtained for four inference engines of 2-inputs/1-
output and four inference engines of 4-inputs/1-output in a Intel Pentium III 1 GHz.



Table 3: Speed obtained with the proposed model.
Inference Engine Throughput

4 Systems 2 I / 1 O 55 MFLIPS 220 MFLIPS
4 Systems 4 I / 1 O 7.04 MFLIPS 28.16 MFLIPS

5.2 Inference Engine on Texas Instruments TI DSPC6x family

As in the previous case, the inference engine receives the Characteristic Vector CV
and the normalization of the input N(I) and obtains the output O applying multilinear
interpolation. The inference engine has been implemented in a fixed-point DSP, the
TMS320C6201 and in a floating-point DSP, the DSP TMS320C6701.

 The code has been developed in C language for both implementations, and has
been optimized successfully using TI compiler options. Although the code has been
developed in a high level language the speed achieved is very satisfactory. This has
an important advantage, the inference engine developed can be executed in any ar-
chitecture with C support. The code has also been manually optimized using Code
Composer Studio.

Code Composer Studio [33] (CCS) is an Integrated Development Environment
(IDE) that provides a variety of tools to simplify the coding process and accelerate
development time. CCS includes a debugger, an editor, a profiler, and a project man-
ager. It also has a highly efficient optimising C compiler and an Assembly Optimiser,
which allows to choose the level of performance required. The compiler enables op-
timising features such as instruction packing, conditional branching, intrinsics, in-line
assembly and program-level optimisation.

The main optimisations introduced in the code are:

�  Unwind of the loops [31,32] of the Approximation Function FO.
�  Segmentation of the operations [5,31,32]. TI C compiler works better when

instructions are very partitioned, because it is able to optimise the multiples
units to be handled, and to reach a higher degree of parallelism.

5.2.1 Inference Engine in a TMS320C6201

The TI TMS320C6201 [30] is a fixed point DSP developed by Texas Instruments,
and the first of the ' C62x generation. It is designed with Texas Instrument´ s VelociTI
architecture, which is an advanced Very Long Instruction Word (VLIW) architecture.
The CPU core of the DSP consist on two data paths with a general purpose register
and 4 functional units each path.

The performance of the inference engine in this platform is given in Table 4.

Table 4: Response time of the model M with a TI TMS320C6201

System Clock cycles Time (ns) MFRPS MFLIPS
2 Inputs / 1 Output 23 115 421,4 8.6



3 Inputs / 1 Output 45 225 1509 4.4
4 Inputs / 1 Output 126 630 3601 1.5

The estimation of number of MFRPS (Mega Fuzzy Rules Per Second) has been
made assuming seven linguistic labels per input and a complete rule-base. Table 4
reveals that the maximum time to make an interpolation is 42 ns. Being n the number
of inputs and m the number of outputs, an upper bound of the execution time is:

( )( ) ( ).ns1242 mT n ⋅−∗≤ (44)

5.2.2 Inference Engine in a TMS320C6701

The TI TMS320C6701 [30] is a floating point DSP developed by Texas Instruments,
and basically has the same architectural characteristics as the C62x. The performance
of the inference engine in this implementation is given in Table 5.

Table 5: Response time of the model M with a TI TMS320C6701

System Clock cycles Time (ns) MFRPS MFLIPS
2 Inputs / 1 Output 30 201 245 5
3 Inputs / 1 Output 43 288 1200 3.5
4 Inputs / 1 Output 66 442,2 5282 2.2

Table 5 reveals that the maximum time to make an interpolation is 67 ns. Being n
the number of inputs and m the number of outputs, an upper bound of the execution
time is:

( )( ) ( ).ns1267 mT n ⋅−∗≤ (45)

6 Features of the High-Speed Full-Programmable Fuzzy Model

Fig. 7 shows the original control surface of a two input-one output fuzzy system FS
with Max-Min as the inference method and COG (Center Of Gravity) as the defuzzy-
fication algorithm.



 Fig. 7:  Control Surface of FS

Both the inputs and the output  have seven linguistic labels: negative big (nb),
neagtive medium (nm), negative small (ns), zero (z), positive small (ps), positive me-
dium (pm) and positive big (pb). The shapes of the membership functions are trape-
zoidal or triangular. The rule-base contains 49 rules.

6.1 Output comparison of the Model M

This section compares the output of the system FS of Fig. 7 with the output obtained
with the approximated fuzzy system AFS obtained from the compilation of FS with
the proposed Model M, shown in Fig. 8.

 Fig. 8:  Control Surfaced produced by the compilation of FS with Model M.

The values of the control surface of FS where obtained with the fuzzy IDE (Inte-
grated Development Environment) FuzzyTech [14]. The output values of the ap-
proximated fuzzy system AFS were obtained executing the inference engine on a Intel
Pentium III 1 GHz.



 The comparison of the value of 48,682 points of both systems shows that: (1) 35%
of the points of AFS have exactly the same value as in FS, (2) the deviation of the
other 65% of the points is smaller than 0.5% with respect to the output range and (3)
the average deviation of all the points is 0.57%.

All that, in spite of the fact that the original FS uses triangular membership func-
tions to define some of the inputs. This is the worst case scenario, because triangular
membership functions only have one point of certainty, and the Model M is designed
to keep the certainty of the designer. This means that when the original systems FS
uses trapezoidal labels, or any label whose kernel is wider than just one point, the
approach produced by AFS would be even better.

A useful advantage is derived from using multi -linear interpolation as an approxi-
mation function of the Model M: the elimination of small variations in the original
control surface. As a matter of fact, triangular or trapezoidal labels usually are naive
representations of the real concept and they produce non desired variations in the
control surface whose filtering provides benefices in control applications [9,10].

Model M is based on the fact that the design of FS is tolerant by nature. The de-
signer knows the output he wants, only in several points of reference and the rest of
the response of the system is deduced by means of a combination of the output in
those points. The output of the system in the reference points is expressed by rules,
and the algorithm of combination is given along with the FS programming. Because
Model M generates a control surface which preserves the positions where the output
is well known by the designer, and approaches the rest of the positions, the result is
that model M preserves the certainty of the designer.

6.2 Speed comparison of the Model M

Table 6 gives the processing time of some commercial fuzzy coprocessors. WARP
2.0 [25] and SAE81C99 [6] are fuzzy commercial coprocessors of ST Microelec-
tronics and Siemens respectively.

Table 6: Processing Time of some commercial Fuzzy Coprocessors

System WARP 2.0 SAE81C99
3 I / 1 O ---------------

-
12 µs

4 I / 2 O 33.1 µs --------------

Values of Table 6 show that Model M implemented in DSP’s reduces the execu-
tion time of a fuzzy system, in the worst case, by a factor of f ifteen. Implementation
on  Intel Pentium III 1GHz. reduces the execution time by a factor between 550 and
990, depending on the number of inputs and the considered co-processor.

Usually high-speed fuzzy processing systems are based on ASIC developments or
on compilers that adapt the original fuzzy system into some representation suitable of
being executed with high speed. In this section we present some of the most relevant
related work in order to compare the speed achieved with the Model M.



Some of the most relevant solutions based on ASICs are:

�  Project HEPE (High Energy Physic Experiments) uses fuzzy logic to compute
the trajectory of particles in an accelerator. In [11] it is described the design and
implementation of a fuzzy coprocessor of four inputs and one output which em-
ploys PROD-SUM as T-norm and T-conorm. This coprocessor obtains a proc-
essing speed of 50 MFLIP’ s without defuzzyfication, but only 12 MFLIP’ s in-
cluding defuzzyfication.

�  In [13] it is also presented a MIN-MAX co-processor. It makes deffuzzification by
the method of centre of gravity (COG) which is computationally heavy. Its
maximum execution speed is of 6 MFLIPS.

�  The processor shown in [24] reached 10 MFLIPS using Lukasiewicz as T-norm,
with a pipelined architecture.

Some of the most relevant solutions based on compilation of the rule-base are:

�  In [39] it is described a fuzzy co-processor, FZP-0401A based on the compilation
of the rule-base. The authors also prove that a Takagi-Sugeno FS is equivalent to
an interpolator. This result is the base of the co-processor implemented on an
ASIC. The speed obtained is 0.48 MFLIPS.

�  Rovatti [22] developed a model of inference based on simplicial interpolation,
starting from Takagi-Sugeno systems. It uses Min-Max as an inference method,
triangular labels with degree of overlapping of two in the input, and singletons at
the consequent. This model was implemented on an ASIC and a speed of 2
MFLIPS was obtained.

As shown in Table 1, Table 4 and Table 5, the speed obtained by Model M in a
DSP is faster than the best part of related work, and when comparing the Pentium III
implementation, the speed is remarkably improved when compared with related
work. At the same time it is important to take into account that model M is fully pro-
grammable. Therefore, it can be adapted to any inference procedure, shape of labels
or defuzzyfication method, and do not present any restriction, being able to imple-
ment any fuzzy solution.

7 Conclusions and Future Work

This paper has presented a compiler that allows to execute real-time full -
programmable fuzzy systems using standard SIMD architectures.

 This compiler makes it possible to introduce fuzzy logic techniques to applica-
tions that require real-time processing and more programmable capabiliti es. Using a
standard architecture as a DSP or a microprocessor also makes possible to develop the
final solution very fast and at a low cost, compared to specific fuzzy circuits. Also, a



full -programmable model allows to use the same hardware and the same model for
any kind of application.

The future work is divided in two main areas: (1) optimize the Model M in order to
reduce the number of computations needed to obtain the output and (2) implement the
Model M in new platforms that will i ncrease the speed obtained.

Some improvements that can be made as part of the first area are the optimization
of the normalization and equalization functions, especially to avoid unneeded output
calculations.

The second area should explore the implementation of the Model M in new plat-
forms such as TMS320C64 [27], TMS320C6211 [29] and TMS320C6711 [28]  and
Pentium IV. The design of an ASIC that implements the execution phase of the
Model M could improve the performance of the system. An interesting intermediate
solution between standard architectures and ASICs are CISCP (Configurable Instruc-
tion Set Processor) architectures, such as [2]. In this case the design of an interpola-
tion instruction should improve the processing speed.
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