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Abstract. This paper presents a red-time full-programmable fuzzy com-
piler based on pecavise linea interpolation techniques designed to be exe-
cuted in SIMD (Single Instruction Multiple Data) architedures. A full-
programmable fuzzy processor is defined as a system where the set of rules, the
membership functions, the t-norm, the t-conarm, the aggregation ogerator, the
propagation operator, and the defuzzyficaion agorithm can be defined by any
valid agorithm. The SIMD platforms sleded are the Intel Pentium Il (using
the SSE set of instructions) and the Texas Instruments TI DSP C6x family. The
final speal oltained in bah implementations is highly satisfadory and better
than the spead provided by standard spedfic hardware.

1 Introduction

Fuzzy logic has been successully introduced in a wide range of applicaions, ranging
from clasdcd control systemsto dedsion suppat systems like nuclea plant supervi-
sion[12], medicd applications [40] or automotive gplicaions[7]. A wide variety of
fuzzy logic goplications are described in [1,17]. Nevertheless two are the main draw-
bads of fuzzy logic solutions: (1) the procesing speed and (2) the limited program-
mable caabiliti es of both the spedfic platforms and the design environments.

The need to processfuzzy knowledge base systems with high speed resulted in the
development of fuzzy hardware achitedures. The first developments were dore in
the mid-80's by Togal [34] using a digital architedure, and by Y amakawa [36] using
analog techniques. Before that, other ASICs designed to process fuzzy knowledge
bases with high speed where developed [6,25]. During the mid-90's due to the al-
vancein the performance of standard architedures, it becane possble to use them as
aplatform for high speed fuzzy processng. In order to oltain the maximum perform-
ance possble in standard architedures fuzzy compilers where developed [23,39].
These compilers are based in the ideathat the fuzzy syntax of the rules is a useful
way of representing knowvledge, and the fuzzy algorithm is a useful way of processng



it, but they are not the best way of processing a fuzzy logic system in a standard ar-
chitecture. In order to process fuzzy systems with high speed in standard architectures
it is needed a compilation from the fuzzy system syntax to a syntax suitable for a
standard architecture.

The design characteristics of a fuzzy system are application dependent. Different
applications will require different T-norm, different membership functions, or differ-
ent defuzzyfication algorithms. Besides, the same problem can be solved by different
designers using fuzzy systems with different characteristics (different membership
functions, different inference mechanism, or different defuzzyfication algorithms, for
example). Nevertheless, a common characteristic to almost all fuzzy coprocessors is
that only the set of rules and the membership functions of the system can be defined,
while the fuzzy algorithm is implemented by hardware, and can not be programmed.
This problem is also present in fuzzy compilers; they are designed for a specific fuzzy
system (usually Takagi-Sugeno (TS) [22,39]) and, again, only rules and membership
functions can be defined. Some fuzzy logic IDE (Integrated Development Environ-
ments) do allow programmable capabilities, but the fina inference mechanism ob-
tained does not provide high-speed processing.

In this paper a full-programmable fuzzy system is defined as a system where the
rules, membership functions, the t-norm, the t-conorm, the propagation operator, the
aggregation operator, and the defuzzyfication algorithm can be defined. A full-
programmable fuzzy compiler will allow to execute any kind of application using
standard hardware.

The platforms selected for the implementation of the proposed compiler are Intel
Pentium 111 [16] and the Texas Instruments DSP C6x family (C6201 [30] and C6701
[30]). These two families are, respectively, good examples of a microprocessor and of
a digital signal processor architecture, which are the typical platforms for the execu-
tion of fuzzy logic systems. Also both platforms have SIMD architectures which
make them ideal to execute the proposed compiler.

In the rest of the paper, first the objectives and the related work are described. Next
a full-programmable fuzzy compiler and its implementation on SIMD architecturesis
introduced. In the last section, the characteristics of the controller implemented are
compared with other implementations.

2 Objectivesand Related Work

The main objective is the design of a high performance, full programmable compiler
for fuzzy systems. This goa makes the model to be involved in two fundamental
aspects: firgt, full programmability and, second, high performance in standard archi-
tectures.

Full programmability means to be able to define absolutely all the processes that a
fuzzy controller is able to carry out. That definition consists on determining the algo-
rithm that characterizes each process. The programmable characteristics should be:
(1) membership functions (any kind of membership function should be possible with



the only constrain of being fuzzy numbers), (2) T-norm and T-conorm, (3) propaga-
tion operator, (4) aggregation operator and (5) defuzzyfication algorithm.

On the other hand, the term high performance is a time-varying concept depending
on the current technological state: nowadays, we may assume that it is acceptable to
have an execution speed of the order of tenths of MFLIPS. With a response time in
the order of nanoseconds, it is ensured the possibility to serve a majority of applica-
tions, as shown in [4].

Some authors have aready presented the idea of using a compiler to execute a
fuzzy system. In [22,23] a compiler is presented, based on interpolation for TS sys-
tems with membership functions with an overlap factor of two. The ASIC imple-
mentation of this compiler achieves 2 MFLIPS. In [39] it is presented a coprocessor,
the FZP-0401A, based on the compilation of the knowledge base also for TS systems
that has a processing speed of 0.48 MFLIPS.

Although the concept of compiler has aready been used, as far as we know, no
compiler has been developed for full-programmable fuzzy systems. The development
of such a compiler can be done using the concept of Approximate Fuzzy Compila-
tion.

3 Approximate Fuzzy Compilation

Standard architectures are not adequate for high performance fuzzy processing, be-
cause their structure has been designed for numerical applications and, tough fuzzy
inference is usually made in a digital way by fuzzy coprocessors, the nature of the
treated information is not essentially numerical. Consequently, our purpose is to in-
troduce a previous compilation of the original fuzzy system in order to adapt it to the
operations usually made by a high performance standard processor.

Fuzzy System
FS= (T, T, PO, AO, D,
R, MF, MF M, I, O)

Approximated
Fuzzy System

Approximate Fuzzy
Compiler Characterised by the
strictly needed set of

samples

Characterised by its
Control Surface

Fig. 1: Concept of Approximate Fuzzy Compilation.
As shown in Fig. 1, the compiler starts from the specification of an n-dimensional
fuzzy system (FS), defined by the vector:
FS=(T,T,PO,AO,D,R ,MF, ,MF_M,I,0) (1)

where T, is the T-norm of the system, T, is the T-conorm, PO is the Propagation Op-
erator, AO is the Agregation Operator, D is the Defuzzyfication algorithm, Ris the set
of Rules of the system, MF, are the set of Membership Functions of each input ,



i=1,...n, defined as fuzzy numbers, MF_ are the Membership Functions of the lin-
guistic labels defined onead ouput, I=(1,,...,1,) is the vedor of inpus of the system,
and O=(0,,...,0,) isthe vedor of the outputs of the system.

The compiler extrads an Approximated Fuzzy System (AFS) charaderised by
mathematicd structures able to make afast evaluation d the system.

The oontrol surface(CS) is the output of the system for any inpu values inside the
universe of discourse. The main condition that must fulfil afuzzy model isthe aility
to generate a ontrol surfaceCS' such that,

CS =CS )

Indead, what becomes important under the point of view of afuzzy model isto be-
have & close & possbleto the fuzzy system. Althoughthe output of the goproximate
system is not exadly the same, thisis not relevant since afuzzy controller is not con-
ceived as a predse system. The designer determines the output of the system only in a
reduced set of well-seleded samples and the rest of the output is obtained as a wher-
ent mix of them. Taking into acmurt these ideas, the compil er must keep the value of
the system in the points given by the designer in the fuzzy knowledge base, but can
obtain an approximation for the rest of the points for which no \elue was gedfied.
The compiler will preserve the cetainty of the designer in the Approximate Fuzzy
System obtained.

The ooncept of certainty in this context is related with the design d the fuzzy
membership functions. For any given membership function, the kernel represents the
set of paints for which the designer has a wmplete ceatainty of the output of the sys-
tem. The compiler will preserve the output value of these inpus. For the rest of the
points, where the membership function gaes from 0 to 1 a viceversa, the designer
has only a partia certainty of the output of the system. In these points the compil er
can produce an approximation.

In fad, many fuzzy systems are type-2 [19,21] fuzzy logic systems (FS). In these
kind d systems uncertainty is modelled using the third dmension d type-2 fuzzy
sets. A type-2 FSis able to consider uncertainties abou measurements, rule labels of
antecalents and consequents, fuzzy logicd operators in use, etc. When al uncertain-
ties disappea, then atype-2 FSreducesto atype-1 FS. Althougha complete theory of
type-2 fuzzy logic systems exists for general type-2 fuzzy sets, it is only for interval
type-2 fuzzy sets that type-2 FSs are cmommonly pradicd. This paper uses this uncer-
tainty as a positive fador to reduce the mmplexity of the crrespondng approximate
fuzzy agorithms.

More formally, the aontrol surfaceCS of an interval type-2 FS can be modeled by
an interval function F:

F:x - (2,2) ©)

where x is the multivariate input of the MISO system considered and (z,, z,) is the
correspondng ouput interval.

To implement this interval fuzzy function F an approximation function F~ is de-
fined:



F:x -z (@]

such that z, 00 (z,, z,). This approximation is good enough in many practical applica-
tions. The main advantage of this consideration is that some functions F~ can be mod-
eled in many circumstances with a much more simple structure than the original
fuzzy function.

A very simple approximator to implement is the multilinear interpolator that is
well-known in finite elements analysis and computer graphics. Multilinear interpola-
tors are simple extensions of linear ones to the multidimensional case, and are defined
by a sequence of linear interpolations.

These multilinear interpolators can aso be specified in a fuzzy way by means of a
product-sum TS fuzzy system with triangular fuzzy partitions on the antecedents
domain [8,18]. Moreover, it is possible to use the referred characteristic points of the
specified antecedent partitions: interval corners of support and core of the corre-
sponding antecedents, to directly specify each initial approximate triangular fuzzy
partition. The corresponding domain points can also be considered such a suitable
nonuniform sampling of the specified fuzzy rule system, and the values of output
function on these characteristic grid points are used to define the approximate multi-
variate TS system considered:

{Ri: If x isNi then zisz} (5)

where Ni is the corresponding multivariate second order pyramidal spline and 7z is
the corresponding output function in the multidimensional sampling point i.

The next section presents the derived model to efficiently compute this TS system
in a standard processor architecture.

4 High-Perfor mance Full-Programmable Fuzzy M odel

The developed Fuzzy Model has been structured in two steps, the first one compila
tion and the second one, execution. The compilation step transforms the original
fuzzy system (FS) into an equivaent approximate fuzzy system (AFS) capable of
being executed in real time in a standard architecture and keeping the relevant infor-
mation of the original fuzzy system. The execution step describes how the output is
computed using the information obtained in the compilation step.

4.1 Full-Programmable Fuzzy Compiler

Let afuzzy system FSbe defined by avector as stated in (1).



4.1.1 Definitions of some useful functions and spaces

In this section a set of functions and spaces are defined in order to make easier the
description of the mode!:

* F, (V). Let V=(A,,..,A) be avector with ALR. F (V) sorts the components A in
ascendant order, obtaining the output V' ={A;.., A"} with A'<..< A’

* F(V). Let V=(A,,..,A) be avector with ALR. F (V) takes out the components of
V which are repeated and generates anew vector V' £A',..,A)) with A", Z...ZA".

s F(V). Let V=(A,,..,A) be avector with ALR. F(V) obtains the intervals of vec-
tor V:

F(A- - A)=[AA), - [ALA)). (6)

e Card(A). Givesthe cardinality of the parameter A.

* S Istheinput space of the fuzzy system FS.

 Kernel (A). Obtains the two extreme points that define the kernel of A.
* Supp,(A). Obtains the two extreme points that define the support of A.

4.1.2  Partition of theinput space S

Rule activation depends on the region in which the inputs are included. Consequently,
it is important to make a coherent partition of the input space, accordingly to the
position of the linguistic labels.

We define the Activation Points of the input I;, AP,, with i=1,...n, as the set of
points determined by the extreme points of the kernels and supports of each member-
ship function of 1, in ascendant order. Using the functions defined in 4.1.1, we can
express the Activation Points as.

API = I:e E:or |g:anit(jv”:)(S‘Ippe(l\/”:i,k) D Kernele(MFi,k))% (7)

The Activation Intervals of an input I, Al, is defined as the intervals of the Acti-
vation Points:

Al =R (AR). (8)

Let FSbe afuzzy system with activation intervals Al = {Al,, --- JAl } of the input
variables1={1,, --- || }, and Sthe n-dimensional input space defined by the vector | of



inpus. The partition P of the input spaceS of the system is defined as the cartesian
product of the dements of Al:

P= XA, 9)

i=1

The next step of the model obtains the output of the FSin the vertex that define the
cdls of the partition P. Starting from these values, we nstruct the gproximate
control surfaceCS. The number of cdls of the partition P is given by the following
expresson:

Card(P) = : Card(Al,). (10

1=1

Each ore of the cédlsin P, P,, is determined by 2 vertex, being n the dimension o
the system, n = Card(l). Calling VP the total humber of the vertexes of P, we can
write the following expresson:

VP = ﬁ cardAR ) (11)
k=1

4.1.3 Characteristic Matrix of the fuzzy system FS

We define the Vertex Matrix V of a fuzzy system FS, as the matrix that contains the
vertexes of partition P. The Characteristic Matrix CM is defined as the n-dimensional
matrix containing the output of the FS in the vertexes of partition P. Being Dim =
Card(AP), the number of elements of the adivation pants of the dimension i, the
element Va, _a, of V can bewritten asfollows:

V, s, = (AR, (IDAR, ). (12)

Consequently, V can be expressed as the Cartesian product of the adivation padnts
AP, of eadinput to the FS

V = xAR. (13

i=1

Ead vertex Va,, ,a, in V is an identifier of a cdl P, of the partition P, where k is
obtained as:

k= l E(a -1) |‘| Card(AIk)E-FL (14)

I k=i+1



with a, =1 -- Card(AP)-1, .., a,=1 - Card(AP )-1. The cdl P, is defined by the set
of vertexes VE,,:

VEk = Q/al,az ..... a, 7Va1 +la,,., a, 1Va1,a2 +1..,a, !""\/a1 +la, +1..a, +1) (15)
The Characteristic Matrix CM is obtained as the output of FSin ead element of V:

CM, o a = FS(Val,awan ) (16)

In order to acceerate the exeaution, the compilation prese defines two more func-
tions: Equalisation (E) and Normalisation (N).

4.1.4  Equalisation of theinputs of the system

Let1=(l,1,...l,) bethevedor of inpus of the fuzzy system FS. We define the equali-
sation d the dimension k (k = 1, ,n) as the natural number indicaing the adivation
interval Al,_in which the inpu I, is found Consequently, being j=Card(AP,) for eadh
inpu 1, the Equalisation Function E(1,) isdefined asfollows:

M si IkDAIkl

Ek('k)=§2 si I DAL 17

Bi-lsi I OAL 4

Fig. 2 presents agraphicd representation o the function E(1,).

-1 |

Fig. 2: Equalisationfunction E(1,)

The Equalisation Vector E is defined as the set of all the equali sation functions:

E=(E(1)).-.E,(1)- (18)



In the same way, the Equalisation Vector of an input |, E(l), is defined as the set of
values of the equalisation functions for that input:

E()=(E(1),-.E1) = (a8, ), (19)

The Equalisation Vector of | identifies the cell P, of partition P in which the input
| isincluded, as stated in (14) and (15).

415 Normalisation Functions

The objective of the normalisation functions is to make al inputs to be normalised in
therange [0,1) in each activation interval.

Each coefficient a_of (19) points to the activation interval of I, which is currently
active. Being [A,B) the activation interval a, of I,, the Normalisation Function of I, in
the activation interval a, is defined as follows:

(20)

For each input |, of the input vector I, there will be Card(Al,) normalisation func-
tions. N(1,) is defined as a vector containing all the normalisation functions of |,:

Nk (Ik):(Nk,l(lk)'mIDNk,Card(Alk)(lk))' (21)
The Normalisation Matrix (N) is defined as the set of al normalisation functions:
N = (N, (1,),mmN, (1,))- (22)

Finally, as it was the case for the equalisation functions, the Normalisation Vector
of the input 1, N(I), is defined as the vector obtained after applying the respective
normalisation functions to each one of the dimensions of the input vector I:

N (I ) = (Nlal (I 1)1D]IDN n,a, (l n)) (23)

where, as stated in (19), (a,,a,,, @) represent both, the activation intervals of |, and
the vertex of the cell in which the input | isincluded.

4.1.6 Approximate Fuzzy System

As aproduct of the compilation we obtain three items:

1. Characteristic Matrix (CM) described in 4.1.3, expression (16)
2. Equalisation Vector defined in (18): E={E,(l)),...E (I )}



3. Normalization Matriz defined in (22): N={N,(), ...N (1)}

The set of these three items congtitutes the so called Approximate Fuzzy System
(AFS) of the original Fuzzy System FS:
AFS= {MC, E, N}. (24)

4.2 Execution Step of the Full-programmable Fuzzy System

Once the AFS has been obtained, the first step for the computation of the output of
the model is to get the relevant information. With this purpose, it is necessary to cal-
culate the equalisation vector E(l) of the input | using (19). Using the equalisation
vector E(1) as an index in the characteristic matrix CM, the outputs of FS for the ver-
texes of the cell Pk in which theinput | isincluded are obtained.

We define the Characteristic Vector CV(l) of the input I, as the set of values of
the output of the FSon the vertexes of the cell P, in which the input | isincluded:

CV(1)=(CMa, o, mm, - CM 41,0, 8, - CM a2, 41,178, M a0, 18, 41)  (25)
The vector (a,,a,, -, &), has the necessary information to obtain N(I) applying (23):
N(I)= (NlagL (1) Nga, (1) 0Ny, (0 n)) (26)
The Approximate Fuzzy System Function of the input I, AFS(1), is defined as the
computation of the Characteristic Vector CV(I) and the Normalisation Vector N(I)
making use of the information provided by the Approximate Fuzzy System AFS,

AFS(1)={cv (1), N( )} (27)

The second step of the execution phase, obtains the output of the system using the
data obtained in (27). Being O be the output of the model, O is obtained as:

0 =Fo(AFS(1))=Fo(cv(1),N(1)) (28)
where F, is the Approximation Function that produces the output that the model pro-
vides. The High-performance Full-programmable Fuzzy Model, or Model M for
short, is defined as a tuple formed by AFSand F_:

M ={AFSF.}. (29)



421 Choosing the Approximation Function F
The Approximation Function F, should verify the following characteristics:

= F,must be defined as:
Fo (RZ”, Rn)_’ R (30)

= Theresult of F, for aninput | must be as near to the original FSas possible:
FS(1)= Fo(AFS(1)) (31)

= F,must be ableto be efficiently implemented in a SIMD architecture.

The most immediate Approximation Function F, that fulfills these premises is
Multi-linear Interpolation.
4.3 Generalisation of the Model M to Multiple Output Systems
Let FS=(T,T,PO,AOD,RMF ,MF_M,l,0) be a multiple output (MIMO) fuzzy sys-
tem, with O = (O,, -+, O,), where mis the number of outputs. The adaptation of the

Model M to the MIMO FS consists on considering the original FS as composed by m
fuzzy systems:

FS=(T,T,PO,AO,D,R ,MF,MF, M,|,0)
FS =(T,T,PO,AO,D,R ,MF,MF_M,,0,)

From each one of the fuzzy systems {FS, -, FS} an associated model is ob-
tained:

M; = (AFS;,Fo) 0D M, =(AFS,, Fo). (33)

Consequently, the Model M of the MIMO FS is given by the set of al the sub-
models:

M ={M,,0IM .} . (34)

4.4 Validation of the Model M: The Model M as a Takagi-Sugeno Compiler

The validity of the model M can be proved demonstrating that it produces an ap-
proximation of the control surface CS as stated in (2), and that this approximation can



be made as close to the original surface as needed. The proof consists only on proving
that the proposed compiler provides a Takagi-Sugeno system.
The fact that the Model M provides an approximation to the original CS of FSis
based on the following results:
= A Zero-order Takagi-Sugeno system with triangular linguistic labels, unity
partition, overlapping factor of two, product as T-norm and weighted sum as
T-conorm is amulti-linear interpolator. This result can be found, for example,
in[18].
= A Zero-order Takagi-Sugeno system with triangular linguistic labels, unity
fuzzy partition, overlapping factor of two, product as T-norm and weighted
sum as T-conorm, is a universal approximator. Castro [3] demonstrated that
Takagi-Sugeno systems, as well as many others, are universal approximators.
Similar results may be seenin [20,37,38].

Starting from those results the proof is immediate: as stated in [18] a zero order
Takagi-Sugeno system with triangular linguistic labels, unity fuzzy partition, over-
lapping factor of two and product-sum as T-norm and T-conorm respectively, is
equivalent to carrying out a multi-linear interpolation.

The Model M uses multilinear interpolation as the Approximation Function F, in
each cell P, of the input space. Consequently, in all those cells it is possible to obtain
an equivalent Takagi-Sugeno system with the previous characteristics.

E“ Ek+1
I 1
I 2
5 oM, [CM,,
Cell
Ep+ 1 -
CM K.p+l CMk+1,,p+ 1

Fig. 3: Takagi-Sugeno System generated in a concrete cell.

For a system of two inputs, Fig. 3 shows acell P, of P with the linguistic labels of
the equivalent Takagi-Sugeno system and the output of the FSin the vertexes of the
cell. The four rules which would define the equivalent Takagi-Sugeno system are the
following ones:

Ifl,isg andl,isE, then Z=CM,,
Ifl,isg,, andl,isE, then Z=CM,,,, (35)
Ifl,isg andl,isE,, then Z=CM,,,
If1,isE,,and l,isE,, then Z=CM

p+l k+1,p+1



Making a generalisation of these concepts, the conclusion is that it is possible to
get the equivalent Takagi-Sugeno system for al the cells derived from the compila
tion step of the Model M, using partition P and the characteristic matrix CM. The
Model M provides a Takagi-Sugeno system which, according to [3], is a universal
approximator. Then, the Model M is a universal approximator.

As aparticular example, any zero-order Takagi-Sugeno system with triangular lin-
guistic labels and overlapping factor of two is approximated by the Model M without
error.

45 Estimationsof the Model M

Once the Model M has been defined, it is important to evaluate the computational
cost. With this purpose, the most important parameters are the amount of memory
needed to store the data structures generated by the model M, and the execution time.

If we call B the number of bytes of a real humber or an integer in the chosen ar-
chitecture, the amount of necessary memory will be given by:

Mem, = Bﬁl Card(AR). (36)

In the case of having the Equalisation and Normalisation Functions digitised, they
would involve tables of memory. Let p, (i = 1, -+, 1) be the number of bytes used by
the sensors of every one of the inputs of the system, B, and B, the size in bytes of the
equalisation and the normalisation of an input, and n the dimension of the system, the

amount of necessary memory to keep the tables of digitisation M, would be:
n
Mg =Y 2P (B +Bp). (37)
=1

The execution time of the model M is highly dependent on the Approximation
Function F, employed. The values given in this analysis are referred to multi-linear
interpolation. The number of interpolations to be made in an n-dimensional system
equals 2"-1. Consequently, being T the processing time for a single interpolation, the
total amount of time T, necessary to carry out the multi-linear interpolation will be:

T =l 1), (38)

The estimation of T may be done as the addition of the processing time of a prod-
uct, an addition and a substraction:

T=Tprod *Tsum *Tsub - (39)



In order to estimate the latency to obtain the characteristic vector CV(I) and the
normalisation vector N(I), we will distinguish between discrete inference engines and
non-discrete inference engines. Being ¢ the evaluation time of an equalisation func-
tion, p the evaluation time of a normalisation function and | the access time to mem-
ory, the total amount of time T to obtain the output in a non-discrete engineis:

T=T,+nc+np+2"I. (40)

In the case of discrete engines, the evaluation time of the equalisation and normali-
sation functionsis reduced to a single memory access.

T=T,+nl+2" . (41)

However, asit will be described latter, if the architecture of the processor is suita-
bly designed and a cache memory is installed in order to keep the last accessed val-
ues, the evaluation time of N(I) and CV(l) become negligible. In this case, the total
amount of time necessary to get the output T, is reduced to the latency of the multi-
linear interpolation:

T=T,. (42)

This reveals the crucia importance of the computationa efficiency of the ap-
proximation function F.

Taking into account (36) and (37), it is easy to see that the amount of memory
grows exponentially with the number n of dimensions of the system, and aso linearly
with the number of activation points of each dimension. Similarly, the execution time
also grows exponentially with the number of dimensions. Thus, the number of dimen-
sions presents a serious problem, since the model could become unfeasible. Of
course, thisis not an exclusive problem for the Model M, but for all the fuzzy models,
being especialy critical for real-time applications.

However, in a practical system, that kind of problems are usually avoided, since
complex systems are generally designed in atree structure of smaller sub-controllers.
This makes the memory to grow linearly instead of exponentially with the dimension
of the system. Concerning to execution time, the tree structure provides such a degree
of parallelism that increment is linear with the dimension of the system.

5 Architecture of the Controller

The controller implemented is divided in four modules: the Sensor, which receives
the input of the system and produces de Equaliaation and Linealization of that input,
the Interpolation Cache, which contains aso the Model Memory and the Inference
Engine, which from the Interpolation Vaues obtained by the Interpolation Cache



produces the output of the system. The architecture of these components is presented
inFig. 4.

Ecualization Interpolatian Yalyes
o Liresizein Qpt

Sensor Interanlaton Cache Inference Enie —

Mol Memay

Fig. 4: Interconnection of the modules of the Controller

Sensor
The sensor implements the set of Equalization and Normalization functions, E(1,),
N,,(1,). From the input of the system |, the sensor obtains (a,,...,a,) and N(1).

Memory Model
The Memory Model stores the Characteristic Matrix of the system, CM.

Interpolation Cache

The Interpolation Cache receives the equalization and the normalization of the input,
(a,...a,) and N(I). From the equalization of the input, it obtains the Characteristic
Vector CV accessing the Memory Model.

Due to the locality of the inputs, if an input isin acell P,, the most probable situa-
tion is that the next input of the system | will be in the same cell P,. This means that
the Inference Engine will have to work with the same Characteristic Vector as in the
previous inference, so the Interpolation Cache does not need to access the Memory
Model to obtain it. The output of the interpolation cache is the Characteristic Vector
CV and the normalization of the input.

5.1 Inference Engine on Intel Pentium |11

The inference engine receives the Characteristic Vector CV and the normalization of
the input N(I) and obtains the output O applying multilinear interpolation. Two dif-
ferent versions of the inference engine have been implemented for Pentium I11: the
first one is based on the compiler optimization capabilities and the second one uses
the set of SSE instructions of the processor.

5.1.1 Inference Engine using Compiler Optimizations

This implementation directly codes the multi-lineal interpolation and uses the optimi-
zations of the C compiler [15] to produce efficient code. In order to obtain optimum



performance, Vtune Performance Analyzer [16] has been used. Also, some rules have
been considered when developing the code:

= Unwind of the existing loops to increase the execution speed.

= To gather the calculations for a better use of the temporal values [35]. Intel C
compiler is capable to minimise the number of memory accesses, and optimise
the use of temporal variables. Because of that, the calculation of the output of
the system is carried out in a single line of code. The compiler will generate
the optimal structure in assembler language.

Table 1: Measurements of the model M in an Intel Pentium 11 1GHz

System Time MFRPS MFLIPS
2 Inputs/ 1 Output 8.67 ns 5390 111
3 Inputs/ 1 Output 12.98 ns 26675 77
4 Inputs/ 1 Output 28.97 ns 80025 33

Table 1 presents the values of the inference engine in a Intel Pentium 111 1GHz
processor. The number of MFRPS (Mega Fuzzy Rules Per Second) has been made
assuming seven linguistic labels per input and a complete rule-base.

The maximum number of clock cycles per interpolation is three. This happens in
the case of two inputs systems becuase the number of operations to be made is not
enough to exploit al the resources of the processor. Being n the number of inputs, m
the number of outputs, and f the clock rate, the upper bound of the execution time T
is:

T<pf 2ol -t)m (ns) (43)

5.1.2 Inference Engine Using the SSE instructions

The SSE set of instructions [15] of an Intel Pentium 111 is an excellent environment to
implement a multi-linear interpolation. This can be done using the SIMD [26] archi-
tecture of the processor.

The Pentium |1l processor has a 128 bit register which can be accessed as a
__mm128 data type. This data type can be aso viewed as four 32 bit registers. Using
this structure, one operation can be done in paralé to four different data, as can be
seenin Fig. 5.
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Fig. 5: SIMD data structure of aPentium 11|

To access and operate with __ m128 data Intel Compiler has a set of intrinsics [15].
An intrinsic is a C function that directly trandates into an assembler operation that
can not be obtained using standard C code. Table 2 has examples of someintrinsics.

Table 2: Example of Intrinsics.
Intrinsic Description
__m128 _mm mul_ps(_ m128x,_ ml28y) Multiplies two _m128 data
__ml128 _mm add ps(_ ml28x, mil28y) Addstwo _m128 data

The code presented in Fig. 6 implements four inference engines (one in each ele-
ment of the SIMD vector) of two inputs and one output, using the set of SSE instruc-
tions.

CQut put G Qut put | =_mm add_ps(_mm add_ps(CV_G CV_I [ 0],

_mmmul _ps(N.G N_I[1],_nmm sub ps(CV_ cv_I[1],cv._GCvl[0])))
,_mmmul _ps(N_G N_I[0], _mmsub_ps(_mmadd_ps(Cv_G CV_I[2],
_mmmul _ps(N_G N_I [1], _nmsub_ps(CV._ G CV_I[3],CV.GCV_I[2])))
, _mm add_ps( _G 1[0], _nm_mul _ps(N_G N_I[1],

_mm sub_ps(CV_G CV. [1],CVGCV|[ 01))))));

Fig. 6: Code of the inference engines

where OutputG is the output of the system, CV_G is the Characteristic Vector of the
input, and N_G the normalization vector.

The feedback of the controller the controller will be given by the architecture of
the implemented fuzzy system. This makes possible that the code given in 6 can im-
plement different architectures. Some examples can be: four controllers of 2 inputs-1
output, 1 controller of 8 inputs-4 outputs, 1 controller of 5 inputs- 1 output, etc.

Each inference engine implemented in 6 has a speed of 55 MFLIPS for a 2-
inputs/1-output system. This gives atotal throughput of 220 MFLIPS in a Pentium 111
1 GHz. (55 MFLIPS each inference system multiplied by 4 inference engines imple-
mented). Table 3 presents the speed obtained for four inference engines of 2-inputs/1-
output and four inference engines of 4-inputs/1-output in alntel Pentium I11 1 GHz.



Table 3: Speed obtained with the proposed model.

Inference Engine Throughput
4Systems21/10 55 MFLIPS 220 MFLIPS
4Systems41/10 7.04 MFLIPS 28.16 MFLIPS

5.2 Inference Engine on Texas Instruments TI DSPC6x family

As in the previous case, the inference engine receives the Characteristic Vector CV
and the normalization of the input N(I) and obtains the output O applying multilinear
interpolation. The inference engine has been implemented in a fixed-point DSP, the
TMS320C6201 and in afloating-point DSP, the DSP TM S320C6701.

The code has been developed in C language for both implementations, and has
been optimized successfully using Tl compiler options. Although the code has been
developed in a high level language the speed achieved is very satisfactory. This has
an important advantage, the inference engine developed can be executed in any ar-
chitecture with C support. The code has also been manually optimized using Code
Composer Studio.

Code Composer Studio [33] (CCS) is an Integrated Development Environment
(IDE) that provides a variety of tools to ssimplify the coding process and accelerate
development time. CCS includes a debugger, an editor, a profiler, and a project man-
ager. It also has a highly efficient optimising C compiler and an Assembly Optimiser,
which alows to choose the level of performance required. The compiler enables op-
timising features such as instruction packing, conditional branching, intrinsics, in-line
assembly and program-level optimisation.

The main optimisations introduced in the code are:

= Unwind of the loops[31,32] of the Approximation Function F.

= Segmentation of the operations [5,31,32]. TI C compiler works better when
instructions are very partitioned, because it is able to optimise the multiples
unitsto be handled, and to reach a higher degree of parallelism.

5.2.1 Inference Enginein a TM S320C6201

The TI TMS320C6201 [30] is a fixed point DSP developed by Texas Instruments,
and the first of the' C62x generation. It is designed with Texasnstrument” sVelociTI
architecture, which is an advanced Very Long Instruction Word (VLIW) architecture.
The CPU core of the DSP consist on two data paths with a general purpose register
and 4 functional units each path.

The performance of the inference engine in this platform is given in Table 4.

Table 4: Response time of the model M with a Tl TMS320C6201

System Clock cycles Time (ns) MFERPS | MFLIPS
2 Inputs/ 1 Output 23 115 4214 8.6




3lInputs/ 1 Output 45 225 1509 4.4
4 Inputs/ 1 Output 126 630 3601 15

The estimation of number of MFRPS (Mega Fuzzy Rules Per Second) has been
made assuming seven linguistic labels per input and a complete rule-base. Table 4
reveals that the maximum time to make an interpolation is 42 ns. Being n the number
of inputs and m the number of outputs, an upper bound of the execution timeis:

T<la2ol" -1)an (ns) (44)

5.2.2 Inference Enginein a TM S320C6701

The TI TMS320C6701 [30] is afloating point DSP developed by Texas Instruments,
and basically has the same architectural characteristics as the C62x. The performance
of the inference engine in thisimplementation is given in Table 5.

Table 5: Response time of the model M with a Tl TMS320C6701

System Clock cycles Time (ns) MFRPS MFLIPS
2 Inputs/ 1 Output 30 201 245 5
3 Inputs/ 1 Output 43 288 1200 35
4 Inputs/ 1 Output 66 4422 5282 22

Table 5 reveals that the maximum time to make an interpolation is 67 ns. Being n
the number of inputs and m the number of outputs, an upper bound of the execution
timeis:

T<lo7ol" -1)an (ns) (45)

6 Features of the High-Speed Full-Programmable Fuzzy Model

Fig. 7 shows the original control surface of a two input-one output fuzzy system FS
with Max-Min as the inference method and COG (Center Of Gravity) as the defuzzy-
fication agorithm.
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Fig. 7: Control Surface of FS

Both the inputs and the output have seven linguistic labels: negative big (nb),
neagtive medium (nm), negative small (ns), zero (2), positive small (ps), positive me-
dium (pm) and positive big (pb). The shapes of the membership functions are trape-
zoidal or triangular. The rule-base contains 49 rules.

6.1 Output comparison of the M odel M

This section compares the output of the system FSof Fig. 7 with the output obtained
with the approximated fuzzy system AFS obtained from the compilation of FS with

Fig. 8. Control Surfaced produced by the compilation of FSwith Model M.

The values of the control surface of FS where obtained with the fuzzy IDE (Inte-
grated Development Environment) FuzzyTech [14]. The output values of the ap-
proximated fuzzy system AFSwere obtained executing the inference engine on a Intel
Pentium 111 1 GHz.



The comparison o the value of 48,682 pants of both systems shows that: (1) 35%
of the paints of AFS have exadly the same value & in FS, (2) the deviation d the
other 65% of the pointsis gnaller than 0.5% with resped to the output range and (3)
the average deviation d all the pointsis 0.57%.

All that, in spite of the fad that the original FS uses trianguar membership func-
tions to define some of the inpus. Thisis the worst case scenario, because trianguar
membership functions only have one point of certainty, and the Model M is designed
to keep the cetainty of the designer. This means that when the origina systems FS
uses trapezoidal labels, or any label whose kernel is wider than just one point, the
approach produced by AFSwould be esen better.

A useful advantage is derived from using multi-linea interpolation as an approxi-
mation function d the Model M: the dimination d small variations in the original
control surface As a matter of fad, trianguar or trapezoidal |abels usually are naive
representations of the red concept and they produce non cesired variations in the
control surfacewhosefiltering provides benefices in control applications[9,10].

Model M is based onthe fad that the design d FSis tolerant by nature. The de-
signer knows the output he wants, only in several points of reference and the rest of
the resporse of the system is deduced by means of a cmmbination d the output in
those paints. The output of the system in the reference points is expressed by rules,
and the dgorithm of combination is given along with the FS programming. Becaise
Model M generates a control surfacewhich preserves the positions where the output
iswell known by the designer, and approaches the rest of the positions, the result is
that model M preservesthe cetainty of the designer.

6.2 Speed comparison of the Model M

Table 6 gves the processng time of some cmmercia fuzzy coprocessors. WARP
2.0 [25 and SAE81C99 [6] are fuzzy commercial coprocessors of ST Microelec-
tronics and Siemens respedively.

Table 6: Procesing Time of some mmmercial Fuzzy Coprocessors

System WARP 2.0 SAE81C99
31/10 | -eemmmeemeeeee- 12 Hs
41/20 R R —

Values of Table 6 show that Model M implemented in DSP s reduces the exeau-
tiontime of afuzzy system, in the worst case, by a fador of fifteen. Implementation
on Intel Pentium 111 1GHz. reduces the exeaution time by a fador between 550and
990, depending onthe number of inpus and the mnsidered co-procesor.

Usualy high-speal fuzzy processng systems are based on ASIC developments or
on compil ers that adapt the original fuzzy system into some representation suitable of
being exeauted with high speed. In this dion we present some of the most relevant
related work in order to compare the spead achieved with the Model M.



Some of the most relevant solutions based on AS Cs are:

¢ Projea HEPE (High Energy Physic Experiments) uses fuzzy logic to compute
the tragjedory of particlesin an accéerator. In [11] it is described the design and
implementation  a fuzzy coprocesor of four inpus and ore output which em-
ploys PROD-SUM as T-norm and T-conam. This coprocesor obtains a proc-
essng spead of 50 MFLIP’'s withou defuzzyfication, but only 12 MFLIP's in-
cluding defuzzyfication.

e In[13] itisalso presented a MIN-MAX co-procesor. It makes deff uzzficaion by
the method d centre of gravity (COG) which is computationaly heavy. Its
maximum execution speed is of 6 MFLIPS

e The procesor shown in [24] reatied 10 MFLIPSusing Lukasiewicz as T-norm,
with a pipelined architedure.

Some of the most relevant solutions based oncompilation d the rule-base ae:

¢ In[39 itisdescribed afuzzy co-processor, FZP-0401A based onthe compilation
of the rule-base. The authors also prove that a Takagi-Sugeno FSis equivalent to
an interpolator. This result is the base of the ®m-procesor implemented on an
ASIC. The speed oktained is0.48 MFLIPS

¢ Rovatti [22] developed a model of inference based on simplicia interpolation,
starting from Takagi-Sugeno systems. It uses Min-Max as an inference method,
trianguar labels with degreeof overlapping d two in the inpu, and singletons at
the @nsequent. This model was implemented on an ASIC and a speed of 2
MFLIPSwas obtained.

As $own in Table 1, Table 4 and Table 5, the speed oltained by Model M in a
DSPis faster than the best part of related work, and when comparing the Pentium Il
implementation, the speed is remarkably improved when compared with related
work. At the same time it is important to take into acourt that model M is fully pro-
grammable. Therefore, it can be aapted to any inference procedure, shape of labels
or defuzzyfication method, and do nd present any restriction, being able to imple-
ment any fuzzy solution.

7 Conclusions and Future Work

This paper has presented a mpiler that allows to exeate red-time full-
programmable fuzzy systems using standard SIMD architedures.

This compiler makes it possble to introduce fuzzy logic techniques to applica
tions that require red-time processng and more programmable caoabiliti es. Using a
standard architedure esaDSPor amicroprocesor also makes posshble to develop the
final solution very fast and at alow cost, compared to spedfic fuzzy circuits. Also, a



full-programmable model allows to use the same hardware and the same model for
any kind d applicdion.

The future work is divided in two main areas: (1) optimizethe Model M in order to
reduce the number of computations needed to oktain the output and (2) implement the
Model M in new platforms that will i ncrease the speed oltained.

Some improvements that can be made @ part of the first area ae the optimization
of the normalization and equali zation functions, espedally to avoid unreeded ouput
cdculations.

The second areashoud explore the implementation d the Model M in new plat-
forms such as TMS320C64 [27], TMS320C6211[29] and TMS320C6711[28] and
Pentium 1V. The design o an ASIC that implements the exeaution phese of the
Model M could improve the performance of the system. An interesting intermediate
solution between standard architedures and ASICs are CISCP (Configurable Instruc-
tion Set Procesor) architedures, such as [2]. In this case the design d an interpola-
tioninstruction shoud improve the processng speed.
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