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Abstract 

This paper presents a real-time full- 
programmable fuzzy processor using piecewise- 
linear intelpolation techniques and implements it 
using the SSE (Streaming SIMD Extensions) set 
of instructions of an Intel Pentium III. A full- 
programmable fuzzy processor is defined as a 
system where the set of rules, the membership 
finctions, the t-norm, the t-conorm, the 
aggregation operator, the propagation operator, 
and the defuzzification can be defined by any 
valid algorithm. Real-time fuzzy processing is 
defined as processing the knowledge base in a 
constant time and with a minimum speed of 10 
MFLIPS. The full-programmable fuzzy processor 
presented processes four 2 input-1 output fuzzy 
systems at 100 MFLIPS on an Intel Pentium III 
450 MHz. 
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1. Introduction 
The need to process fuzzy knowledge base systems with 
high speed resulted in the development of fuzzy hardware 
architectures. This first developments were done in the 
mid-80's by Togai [6] using a digital architecture, and by 
Yamakawa [7] using analog techniques. Before that, other 
ASICS designed to process fuzzy knowledge bases with 
high speed where developed [8][2]. 
The reasons for using a standard architecture for high- 
speed fuzzy processing are: 

Standard processors have reached a point where their 
speed is fast enough to process fuzzy systems with high 
speed. 

The use of a compiler that adapts a fuzzy system to a 
standard architecture allows to obtain high-speed. 

The key concept is given by the second point. The fuzzy 
syntax of the rules is a useful way of representing 
knowledge, and the fuzzy algorithm is a useful way of 
processing it, but, it does not defines the best way of 
processing for a standard architecture. In order to process 
fuzzy systems with high speed in standard architectures it 
is needed a compilation from the fuzzy system syntax to 
a syntax suitable for a standard architecture. 

There are compilers developed for TSK systems mainly, 
and usually are based on interpolation [4][8]. 
A characteristic common to '11 fuzzy coprocessors is that 
only the set of rules and the membership functions of the 
system can be defined, because the fuzzy algorithm is 
implemented by hardware, and can not be programmed. 
This problem is also presented in fuzzy compilers, they 
are designed for a specific fuzzy system (usually TSK), 
and again, only rules and membership functions can be 
defined. 
In this paper a full-programmable fuzzy system is defined 
as a system where the rules, membership functions, the T- 
norm, the T-conorm, the propagation operator, the 
aggregation operator, and the defuzzification algorithm 
can be defined. A full-programmable fuzzy compiler will 
allow to execute any kind of application using standard 
hardware. 
In the rest of the paper, first a full-programmable fuzzy 
compiler is introduced. Then, the high level architecture 
of the controller is presented, and the following points 
present the speed achieved for different systems. 

1. Full-Programmable Fuzzy Model 

The model proposed is divided in an off-line processing 
and an on-line processing. 

1.1 Off-line processing 

FS is a vector FS=(T,T,PO,AO,D,R,MF,I,O) that 
describes a fuzzy system with T,, the T-norm, T, the T- 
conorm, PO the propagation operator, A 0  the aggregation 
operator, D the defuzification algorithm, R the set of 
Rules , MF the membership functions, I the inputs and 0 
the outputs of the system. 
For each Ii E I, the Activation Intervals of Ii, AIi, are 
defined as the union of the set of intervals, left-closed and 
right-open, except the last one which is also right-closed, 
given by the extreme points of the kernel and the support 
of each one of the membership functions defined in Ii. AIi 
is obtained from (MF,, ,..., MFi) with p=Card(MFJ. Fig. 
1 presents an example of Activation Intervals. 

A B C  D E F  

Fig. 1 Activation Intervals AI. 
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The Activation Intervals can be obtained from the 
Activation Points. The Activation Points are defined as 
the set of points of each dimension of the system that 
define the kernel and support of each linguistic label. 
Formally, the Activation Point, AP; can be obtained as: 

AP;= Fe(Fo(u(Supp,(MFi, JuKernele(MFi, 3 ) ) )  with 

From that, the Activation Intervals, are obtained as: 

where Supp, and Kernel, are functions that obtain the 
extreme points that define the kernel and the support of a 
label, Fo is a function that orders a set of points, F, is a 
function that eliminates the repeated points of a set, and 
Fin obtains the intervals, right-closed and left-open, that 
are defined by a set of points. 
Given AIi, i=1 ,...,Card@), and S the n-dimensional input 
space given by (TI,.. . ,  I,,), P is defined as a partition of S 
given by the cartesian product (x) ofAIi,  i=l  ,..., Card(1): 

The partition P is defined in a way that divides the input 
space of the system in the zones where the designer has a 
complete certainty of the output from the zones where the 
certainty is only partial. This can be done supposing that 
the certainty of the designer is shown in the kernel of each 
one of the membership functions designed. 

The cell Pi of the partition P is defined in a N- 
dimensional system as: 

P;=J(AI,BJ,(A,BJ,... (AN,B~)) 
From the definition of Pi, it can be obtained the set of 
vertex that define a cell: 

The model is based on the value of the fuzzy system FS in 
the set of vertex that define P. For that, the matrix V is 
defined as a matrix that contains the set of vertex of 
partition P. V can be obtained from the Activation Points 
as: 

The Characteristic Matrix CM contains the value of the 
f u z q  system FS in each vertex of the partition P.  CM is 
defined as: 

where FS(Y) represents the value of each element of 
matrix V in the fuzzy system given by FS=(T,T,PO,AO 
,D, R, MF, I, 0 ) .  

Example: 

'1 

D' 

Fig. 3 Partition P of the fuzzy system FS 

Given FS a bidimensional fuzzy system (Fig. 3), and P 
the partition of the input space, V and CM can be obtained 
as: 

I (A ' ,  A) (A ' ,  B)  ( A ' ,  C )  ( A ' ,  D )  , = ( B ' , A )  ( B ' , B )  ( B ' , C )  ( B ' , D )  

(C ' ,  A) ( C ' ,  B) ( C ' , C )  ( C ' , D )  

( D ' ,  A) ( D ' , B )  (D', C )  ( D ' ,  D )  1 
1.1.1 Equalization and Normalization of the inputs 

The compiler also defines a set of equalization and 
normalization functions. 
One equalization function, Ek@&, is defined for each input 
of the system. Ek@& is defined as: 

k , ~  
The equalization function is defined to identify in which 
Activation Interval is the input included. The set of values 
of the equalization functions of a system allows to 
identify the active cell, the cell in which the input is 
included. 

One normalization function, is defined for each 
Activation Interval of each dimension k. The 
normalization function normalizes between 0 and 1 the 
actual input in the active cell. The normalization function 
Nb@& is defined as: 

- 
1 -- 

N k . p  ( B - A )  
( I k  - A) 

Fig. 4 shows the normalization done by Nb@&. 
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Fig.4 Normalization done by Nkp(7). 

The proposed model defines a compilation of the 
programmable fuzzy system FS to a specification of the 
same system (Characteristic Matrix, Equalization 
functions and Normalization functions) suitable to be 
executed in a standard architecture. 

1.2 On-line processing 

The on-line processing is divided in two steps: 

The first step obtains the relevant information to obtain 
the output of the system. First, the equalization of each 
dimension of the system is obtained: 

The vector (al, ..., a,J identifies the cell of  Pk in which the 
input is included. The Characteristic Vector of an input, 
CV(I), is defined as the set of 2" values of the original 
fuzzy systems in the set if vertex that define the cell in 
which the input is included. CV(I) can be obtained from 
the Characteristic Matrix, CM,  as: 

In this step, the normalization of the input in the active 
cell, No) ,  is also obtained: 

The second step, using the information given by the 
Characteristic Vector, CV(I), and No),  calculates the 
output of the system 0. The output of the fuzzy model 0, 
will be calculated with a function Fo of CVQ) and No):  

Fo has to produce a value similar to the output produced 
by the fuzzy system FS, and it has to be evaluated with 
high speed. The Fo proposed for the model is a multilinear 
interpolation among the values of VC(I) using No) .  

3. Architecture of the Controller 

The controller implemented is divided in four modules, 
the sensor, the interpolation cache, the model memory and 
the inference engine, interconnected as seen in Fig. 5. 

Fig. 5. Interconetion of the modules of the Controller 

Sensor 
The sensor implements the set of Equalization and 
Normalization functions, Eke, Nkp(Z). From the input of 
the system I, the sensor obtains (a l,...,a,J and NO). 

Memory Model 
The Memory Model stores the Characteristic Matrix of 
the system, CM.  

Interpolation Cache 
The Interpolation Cache receives the equalization and the 
normalization of the input. From the equalization of the 
input, it obtains the Characteristic Vector CV accessing 
the Memory Model. 
Due to the locality of the inputs, if an input is in a cell Pk, 
the most possible situation is that the next input of the 
system I, will be in the same cell Pk. This means that the 
Inference Engine will have to work with the same 
Characteristic Vector as in the previous inference, so the 
Interpolation Cache does not need to access the Memory 
Model to obtain it. 
The output of the interpolation cache is the Characteristic 
Vector CV and the normalization of the input. 

Inference Engine 
The inference engine receives the Characteristic Vector 
CV and the normalization of the input N o )  and obtains the 
output 0 applying multilinear interpolation. 
The SSE set of instructions [3] of an Intel Pentium I11 is 
an excellent environment to implement a multilinear 
interpolation. This can be done using the SIMD [5] 
architecture of the processor and the set of intrinsics 
provided to access the hardware. 
The Pentium I11 processor has a 128 bit register which can 
be accessed as a m m 1 2 8  data type. This data type can 
be also viewed as four 32 bit registers. Using this 
structure, one operation can be done in parallel to four 
different data, as can be seen in Fig. 6. 

Fig. 6 SIMD data structure of a Pentium I11 
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To access and operate with -m128 data the Intel 
Compiler has a set of intrinsics [3]. An intrinsic is a C 
function that directly translates into a assembler operation 
that can not be obtained using standard C code. Table 1 
has examples of some intrinsics. 

Table 1.  Example of Intrinsics. 

Intrinsic 

(-ml28x -m128 returns a -1~1128 data 
Adds two -111128 data and 

m128 

The code presented in Fig. 7 implements four inference 
engines (one in each element of the SIMD vector) of two 
inputs and one output, using the set of SSE instructions. 

OutputG.OutputI=~mm~addgs(~mm~addgs(CV~G. 
CV-I [O] , - m m - m u l g s  (N-G.N-I [ l ]  , - m m - s u b g s  (CV 

- G .  CV-I [ I ]  , CV-G.CV-I [O] ) ) ) , - m m - m u l g s  ( N G . N  
- I [O] , m m - s u b g s  ( - m m - a d d g s  (CV-G.CV-I [ 2 1  , m  
m-mul-ps (N-G.N-I [ l ]  , - m m - s u b g s  (CV-G.CV-I [ 3 ]  
, CV-G. CV-I [ 2 ]  ) ) ) , - m m - a d d g s  (CV-G.CV-I [O] ,-m 
m - m u l g s  (N-G.N-I [l] , - m m - s u b g s  (CV-G. CV-I [ I ]  
C V - G . C V - I i O I ) ) ) ) )  ) ;  

Fig. 7 Code of the inference engines 

Where O u t p u t G  is the output of the system, CV-G is the 
Characteristic Vector of the input and N-G the 
normalization. All of them have been defined as union, in 
order to be accessed either as -m128 or as an array of 
four floats. 
The feedback given to the controller will be given by the 
architecture of the implemented fuzzy system. This way, 
with the code given in Fig. 7 different controllers can be 
implemented. Some examples can be: four controllers of 
2 inputs-1 output, 1 controller of 8 inputs4 outputs, I 
controller of 5 inputs- 1 output, etc. 

4. Features of the High-Speed Full- 
Programmable Fuzzy Model 
Fig. 8 shows the original surface of a 2 Input-1 Output 
fuzzy system with Max-Min as inference system and 
COG as defuzzification method, and the approximation 
obtained applying the high-speed full-programmable 
model. 

Fig. 8 Surfaces of the original fuzzy system (left) 
and the approximation (right) 

Both surfaces are really similar because the surface 
obtained with the approximation is based on keeping the 
certainty of the designer. Comparing 48682 values of the 
two systems it has been found that 35% of the points have 
no error, that 65% of the points have an error smaller that 
10 units of the output (in a range of 1900 units), and that 
the average error is 0.77% on the range of the ouput. 
Each inference engine implemented in Fig. 7 has a speed 
of 25 MFLIPS, this gives a total throughput of 100 
MFLlPS given by a Pentium 111 450 MHz. (25 MFLIPS 
each inference system multiplied by 4 inference engines 
implemented). Table 2 presents the speed obtained for 
four inference engines of 2 inputs-] output and four 
inference engines of 4 inputs-1 output. 

Table 2. Speed obtained with the propossed model. 

The processing speed obtained is enough to process any 
kind of fuzzy application [I], and is faster that the best 
part of implementations and ASICS developed up to now. 

5. Conclusions and Future Work 
We have developed a full-programmable fuzzy model 
able to process fuzzy systems with high speed on 
standard architectures. A Full-Programmable model 
allows to use the same hardware and the same model with 
any kind of application. The speed of the system can be 
easily improved using the new Intel family processors. 
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