
Real-Time Full-Programmable Fuzzy Processor on an Intel Pentium I11

Enrique Frias-~artinez' Julio ~utikrrez-Rios2 Felipe Fernindez-~ernandez~

' Dpto. de Tecnologia Fotonica Dpto. de Tecnologia Fot6nica
ETSI Telecomunicaci6n, Universidad PolitCcnica de Madrid Facultad de Informitica,

28040 Ciudad Universitaria sln, Madrid, Spain Universidad PolitCcnica de Madrid
e-mail: efiias@tfo.upm.es 28660 Boadilla del Monte, Madrid, Spain

Abstract

This paper presents a real-time full-
programmable fuzzy processor using piecewise-
linear intelpolation techniques and implements it
using the SSE (Streaming SIMD Extensions) set
of instructions of an Intel Pentium III. A full-
programmable fuzzy processor is defined as a
system where the set of rules, the membership
finctions, the t-norm, the t-conorm, the
aggregation operator, the propagation operator,
and the defuzzification can be defined by any
valid algorithm. Real-time fuzzy processing is
defined as processing the knowledge base in a
constant time and with a minimum speed of 10
MFLIPS. The full-programmable fuzzy processor
presented processes four 2 input-1 output fuzzy
systems at 100 MFLIPS on an Intel Pentium III
450 MHz.

Key Words: fuzzy processing, linear interpolation

1. Introduction
The need to process fuzzy knowledge base systems with
high speed resulted in the development of fuzzy hardware
architectures. This first developments were done in the
mid-80's by Togai [6] using a digital architecture, and by
Yamakawa [7] using analog techniques. Before that, other
ASICS designed to process fuzzy knowledge bases with
high speed where developed [8][2].
The reasons for using a standard architecture for high-
speed fuzzy processing are:

Standard processors have reached a point where their
speed is fast enough to process fuzzy systems with high
speed.

The use of a compiler that adapts a fuzzy system to a
standard architecture allows to obtain high-speed.

The key concept is given by the second point. The fuzzy
syntax of the rules is a useful way of representing
knowledge, and the fuzzy algorithm is a useful way of
processing it, but, it does not defines the best way of
processing for a standard architecture. In order to process
fuzzy systems with high speed in standard architectures it
is needed a compilation from the fuzzy system syntax to
a syntax suitable for a standard architecture.

There are compilers developed for TSK systems mainly,
and usually are based on interpolation [4][8].
A characteristic common to '11 fuzzy coprocessors is that
only the set of rules and the membership functions of the
system can be defined, because the fuzzy algorithm is
implemented by hardware, and can not be programmed.
This problem is also presented in fuzzy compilers, they
are designed for a specific fuzzy system (usually TSK),
and again, only rules and membership functions can be
defined.
In this paper a full-programmable fuzzy system is defined
as a system where the rules, membership functions, the T-
norm, the T-conorm, the propagation operator, the
aggregation operator, and the defuzzification algorithm
can be defined. A full-programmable fuzzy compiler will
allow to execute any kind of application using standard
hardware.
In the rest of the paper, first a full-programmable fuzzy
compiler is introduced. Then, the high level architecture
of the controller is presented, and the following points
present the speed achieved for different systems.

1. Full-Programmable Fuzzy Model

The model proposed is divided in an off-line processing
and an on-line processing.

1.1 Off-line processing

FS is a vector FS=(T,T,PO,AO,D,R,MF,I,O) that
describes a fuzzy system with T,, the T-norm, T, the T-
conorm, PO the propagation operator, A 0 the aggregation
operator, D the defuzification algorithm, R the set of
Rules , MF the membership functions, I the inputs and 0
the outputs of the system.
For each Ii E I, the Activation Intervals of Ii, AIi, are
defined as the union of the set of intervals, left-closed and
right-open, except the last one which is also right-closed,
given by the extreme points of the kernel and the support
of each one of the membership functions defined in Ii. AIi
is obtained from (MF,, ,..., MFi) with p=Card(MFJ. Fig.
1 presents an example of Activation Intervals.

A B C D E F

Fig. 1 Activation Intervals AI.

Emique Frias-Martinez Julio Gutierrez-Rios Felipe Femindez-Hernindez

The Activation Intervals can be obtained from the
Activation Points. The Activation Points are defined as
the set of points of each dimension of the system that
define the kernel and support of each linguistic label.
Formally, the Activation Point, AP; can be obtained as:

AP;= Fe(Fo(u(Supp,(MFi, JuKernele(MFi, 3))) with

From that, the Activation Intervals, are obtained as:

where Supp, and Kernel, are functions that obtain the
extreme points that define the kernel and the support of a
label, Fo is a function that orders a set of points, F, is a
function that eliminates the repeated points of a set, and
Fin obtains the intervals, right-closed and left-open, that
are defined by a set of points.
Given AIi, i=1 ,...,Card@), and S the n-dimensional input
space given by (TI,.. . , I,,), P is defined as a partition of S
given by the cartesian product (x) ofAIi, i=l ,..., Card(1):

The partition P is defined in a way that divides the input
space of the system in the zones where the designer has a
complete certainty of the output from the zones where the
certainty is only partial. This can be done supposing that
the certainty of the designer is shown in the kernel of each
one of the membership functions designed.

The cell Pi of the partition P is defined in a N-
dimensional system as:

P;=J(AI,BJ,(A,BJ,... (AN,B~))
From the definition of Pi, it can be obtained the set of
vertex that define a cell:

The model is based on the value of the fuzzy system FS in
the set of vertex that define P. For that, the matrix V is
defined as a matrix that contains the set of vertex of
partition P. V can be obtained from the Activation Points
as:

The Characteristic Matrix CM contains the value of the
f u z q system FS in each vertex of the partition P. CM is
defined as:

where FS(Y) represents the value of each element of
matrix V in the fuzzy system given by FS=(T,T,PO,AO
,D, R, MF, I, 0) .

Example:

'1

D'

Fig. 3 Partition P of the fuzzy system FS

Given FS a bidimensional fuzzy system (Fig. 3), and P
the partition of the input space, V and CM can be obtained
as:

I (A ' , A) (A ' , B) (A ' , C) (A ' , D) , = (B ' , A) (B ' , B) (B ' , C) (B ' , D)

(C ' , A) (C ' , B) (C ' , C) (C ' , D)

(D ' , A) (D ' , B) (D', C) (D ' , D) 1
1.1.1 Equalization and Normalization of the inputs

The compiler also defines a set of equalization and
normalization functions.
One equalization function, Ek@&, is defined for each input
of the system. Ek@& is defined as:

k , ~
The equalization function is defined to identify in which
Activation Interval is the input included. The set of values
of the equalization functions of a system allows to
identify the active cell, the cell in which the input is
included.

One normalization function, is defined for each
Activation Interval of each dimension k. The
normalization function normalizes between 0 and 1 the
actual input in the active cell. The normalization function
Nb@& is defined as:

-
1 --

N k . p (B - A)
(I k - A)

Fig. 4 shows the normalization done by Nb@&.

Real-Time Full-Programmable Fuzzy Processor on a n Intel Pentium I11

Fig.4 Normalization done by Nkp(7).

The proposed model defines a compilation of the
programmable fuzzy system FS to a specification of the
same system (Characteristic Matrix, Equalization
functions and Normalization functions) suitable to be
executed in a standard architecture.

1.2 On-line processing

The on-line processing is divided in two steps:

The first step obtains the relevant information to obtain
the output of the system. First, the equalization of each
dimension of the system is obtained:

The vector (al, ..., a,J identifies the cell of Pk in which the
input is included. The Characteristic Vector of an input,
CV(I), is defined as the set of 2" values of the original
fuzzy systems in the set if vertex that define the cell in
which the input is included. CV(I) can be obtained from
the Characteristic Matrix, CM, as:

In this step, the normalization of the input in the active
cell, No) , is also obtained:

The second step, using the information given by the
Characteristic Vector, CV(I), and No), calculates the
output of the system 0. The output of the fuzzy model 0,
will be calculated with a function Fo of CVQ) and No):

Fo has to produce a value similar to the output produced
by the fuzzy system FS, and it has to be evaluated with
high speed. The Fo proposed for the model is a multilinear
interpolation among the values of VC(I) using No) .

3. Architecture of the Controller

The controller implemented is divided in four modules,
the sensor, the interpolation cache, the model memory and
the inference engine, interconnected as seen in Fig. 5.

Fig. 5. Interconetion of the modules of the Controller

Sensor
The sensor implements the set of Equalization and
Normalization functions, Eke, Nkp(Z). From the input of
the system I, the sensor obtains (a l,...,a,J and NO).

Memory Model
The Memory Model stores the Characteristic Matrix of
the system, CM.

Interpolation Cache
The Interpolation Cache receives the equalization and the
normalization of the input. From the equalization of the
input, it obtains the Characteristic Vector CV accessing
the Memory Model.
Due to the locality of the inputs, if an input is in a cell Pk,
the most possible situation is that the next input of the
system I, will be in the same cell Pk. This means that the
Inference Engine will have to work with the same
Characteristic Vector as in the previous inference, so the
Interpolation Cache does not need to access the Memory
Model to obtain it.
The output of the interpolation cache is the Characteristic
Vector CV and the normalization of the input.

Inference Engine
The inference engine receives the Characteristic Vector
CV and the normalization of the input N o) and obtains the
output 0 applying multilinear interpolation.
The SSE set of instructions [3] of an Intel Pentium I11 is
an excellent environment to implement a multilinear
interpolation. This can be done using the SIMD [5]
architecture of the processor and the set of intrinsics
provided to access the hardware.
The Pentium I11 processor has a 128 bit register which can
be accessed as a m m 1 2 8 data type. This data type can
be also viewed as four 32 bit registers. Using this
structure, one operation can be done in parallel to four
different data, as can be seen in Fig. 6.

Fig. 6 SIMD data structure of a Pentium I11

Enrique Frias-Martinez Julio Gutitrrez-Rios Felipe Fernandez-Hernandez

To access and operate with -m128 data the Intel
Compiler has a set of intrinsics [3]. An intrinsic is a C
function that directly translates into a assembler operation
that can not be obtained using standard C code. Table 1
has examples of some intrinsics.

Table 1. Example of Intrinsics.

Intrinsic

(-ml28x -m128 returns a -1~1128 data
Adds two -111128 data and

m128

The code presented in Fig. 7 implements four inference
engines (one in each element of the SIMD vector) of two
inputs and one output, using the set of SSE instructions.

OutputG.OutputI=~mm~addgs(~mm~addgs(CV~G.
CV-I [O] , - m m - m u l g s (N-G.N-I [l] , - m m - s u b g s (CV

- G . CV-I [I] , CV-G.CV-I [O]))) , - m m - m u l g s (N G . N
- I [O] , m m - s u b g s (- m m - a d d g s (CV-G.CV-I [2 1 , m
m-mul-ps (N-G.N-I [l] , - m m - s u b g s (CV-G.CV-I [3]
, CV-G. CV-I [2]))) , - m m - a d d g s (CV-G.CV-I [O] ,-m
m - m u l g s (N-G.N-I [l] , - m m - s u b g s (CV-G. CV-I [I]
C V - G . C V - I i O I)))))) ;

Fig. 7 Code of the inference engines

Where O u t p u t G is the output of the system, CV-G is the
Characteristic Vector of the input and N-G the
normalization. All of them have been defined as union, in
order to be accessed either as -m128 or as an array of
four floats.
The feedback given to the controller will be given by the
architecture of the implemented fuzzy system. This way,
with the code given in Fig. 7 different controllers can be
implemented. Some examples can be: four controllers of
2 inputs-1 output, 1 controller of 8 inputs4 outputs, I
controller of 5 inputs- 1 output, etc.

4. Features of the High-Speed Full-
Programmable Fuzzy Model
Fig. 8 shows the original surface of a 2 Input-1 Output
fuzzy system with Max-Min as inference system and
COG as defuzzification method, and the approximation
obtained applying the high-speed full-programmable
model.

Fig. 8 Surfaces of the original fuzzy system (left)
and the approximation (right)

Both surfaces are really similar because the surface
obtained with the approximation is based on keeping the
certainty of the designer. Comparing 48682 values of the
two systems it has been found that 35% of the points have
no error, that 65% of the points have an error smaller that
10 units of the output (in a range of 1900 units), and that
the average error is 0.77% on the range of the ouput.
Each inference engine implemented in Fig. 7 has a speed
of 25 MFLIPS, this gives a total throughput of 100
MFLlPS given by a Pentium 111 450 MHz. (25 MFLIPS
each inference system multiplied by 4 inference engines
implemented). Table 2 presents the speed obtained for
four inference engines of 2 inputs-] output and four
inference engines of 4 inputs-1 output.

Table 2. Speed obtained with the propossed model.

The processing speed obtained is enough to process any
kind of fuzzy application [I], and is faster that the best
part of implementations and ASICS developed up to now.

5. Conclusions and Future Work
We have developed a full-programmable fuzzy model
able to process fuzzy systems with high speed on
standard architectures. A Full-Programmable model
allows to use the same hardware and the same model with
any kind of application. The speed of the system can be
easily improved using the new Intel family processors.

References
[l] A. Costa, A. Gloria, "Hardware Solutions for Fuzzy
Control", in Proc. of the IEEE, Vol. 83, No 3:422-434,
1995
[2] H. Eichfeld, "A 12b General-Purpose Fuzzy Logic
Controller Chip", in IEEE Transactions on Fuzzy
Systems,Vol4, No. 4:460-475 ,1996
[3] Intel Corporation, "Intel CIC* Compiler User's
Guide, with support for the Streaming SIMD Extensions",
1999
[4] R. Rovatti, "Linear and Fuzzy Piecewise-Linear
Signal Processing with an Extended DSP Architecturein
FUZZ-IEEE 98: 1082-1087
[5] S. Thakkar, "Internet Streaming SIMD Extension", in
IEEE Computer, Dec. 1999:26-34
[6] M. Togai, "Expert System on A Chip", IEEE Expert,
Vol. 1, NO. 3~55-62, 1986
[7] T. Yamakawa, "A simple fiuzy computer hardware
system employing MIN&MAX operations", Proc. of the
2"d IFSA Congress: 122- 130, 1987
[8] N. Yubazaki, "Fuzzy inference chip ZP-0401 based on
interpolation", in Fuzzy Sets and Systems, Vo1.98(3):299-
310

